汽車電子功率MOSFET
功率MOSFET解決方案
·MOSFET的采用已成為當前大部分車載應用的標準。傳統的平面型MOSFET建立在硅晶圓表面之上,而溝道型MOSFET是在硅片上蝕刻垂直溝道,從而讓功率開關得以擁有更高的單元密度和更低的導通阻抗。由于這些電子機械系統大多數都采用了MOSFET H橋式電機驅動結構,兩個器件總是串聯以便使用更低電壓的MOSFET,同時仍然可以耐受常見的汽車高電壓沖擊現象。相比60V MOSFET,這些擊穿電壓更低的器件能夠把開關的導通阻抗降低50%,這意味著系統功耗減少50%,亦即系統發熱減少,最終把散熱要求降至最低。
隨著車載系統設計人員在低電壓功率MOSFET方面累積更多的工作經驗,并開始認識到其性能和成本優勢,低電壓功率MOSFET的應用范圍正在向剎車和顯示屏控制等其它低功率系統擴展。
現在的功率溝道型MOSFET的導通阻抗 (RDS(ON)) 低至1或2毫歐。這雖然大大降低了系統功耗,但給車載系統設計人員帶來了其它復雜性,包括板上布線、系統連接以及封裝中引線在內的寄生阻抗給系統帶來的額外阻抗很可能超過了實際的MOSFET (自身導通阻抗)。要進一步降低導通阻抗,獲得更高功率密度的方法之一是使用混合模塊。當前許多應用都已開始放棄傳統的功率封裝解決方案,改為在IMS (絕緣金屬基板) 或 DBC (直接鍵合銅) 等材料制作的絕緣基板上安裝裸片。即使在使用相同功率硅芯片的情況下,相比分立式功率封裝,這些模塊提供的能量和電流能力都更高。模塊能夠提供更高密度的裸片鍵合或更大的裸片引線鍵合,可減小互連阻抗,同時又把功率元件之間的距離減至最小。這種更高能量密度的代價是元件成本較分立式封裝方案高。不過,對于高
能量系統,系統尺寸和性能方面的改進足以彌補器件成本增加的缺憾。
汽車電子MOSFET發展的一個最終方向是提高感測、控制和保護功率開關的能力。功率器件正在集成到智能化車載系統中。在最低功率級別,MOSFET現在可以與功率器件上的感測元件一起使用。這些感測元件能夠測量電流或溫度,并能夠連接到電子設備上以監控系統性能,并在出現過流或過熱情況時保護功率器件免受損害。
30V 到 60V范圍的低功率器件正在集成到包括串聯接口和微控制器在內的單片式IC中。這種專用的單片IC能夠控制小型電機,甚至可能通過電機和門鎖控制整個門節點。對于更高能量的應用,單片式IC在成本或技術上都不可行,但可以采用創新的封裝解決方案來實現集成。通過把大功率MOSFET和控制集成電路整合在單個封裝中,可以構建超高功率的智能系統。
圖6所示為目前車載系統中采用多芯片封裝的幾個實例。這些智能化器件可以提供更高的系統性能監控能力,通過集成保護功能提高功率系統的可靠性。如過流、過壓和過熱保護等功能都是這類產品的標配。當器件感測到有可能發生上述異常狀況時,能夠把功率MOSFET置于自我保護整個系統的環境中。此外,這些器件還集成有附加診斷功能,用以監控負載開路或短路,有助于指導汽車機械裝置隔離和糾正車輛中出現的問題。
最后,或許也是所有應用背后最重要的推動力量,以及眾多這類技術可用的原因所在:即是產品和系統成本。在汽車業務中,有不變的推動力一直在降低產品和系統的成本。其不僅推動元件成本的降低,也推動車輛擁有成本的降低。在本文中,還把可靠性也視作成本推動力??赡軐е戮€路故障或現場故障的低成本功率器件并不是真正的低成本器件。在選擇汽車所采用的元件時,系統設計人員必須把成本和可靠性作為主要的推動力量。本文討論的產品都是專為車載應用及系統而設計的,并針對汽車終端使用而特性化及鑒定資格。汽車市場已為功率和智能功率器件建立了幾個產品認證標準,比如AECQ100 和 AECQ101標準。面向汽車市場開發和供應的產品必須經設計和特性化,以滿足這些嚴格標準的要求,確保終端系統的性能能滿足設計人員,更重要的是,滿足車主對產品價值的期望。
結語
過去,選擇60V 還是 55V往往是最大的設計問題之一,而經過數年的發展,如今汽車內部的功率器件和設計考慮事項在廣度方面已取得了長足的進步。隨著電子系統針對娛樂、儀表板、動力傳動控制、安全性、車廂和穩定性控制以至車身及便利性控制等不斷發展,一般汽車中的功率器件數目已是數以百計,并且正在急劇增加之中。選擇正確的器件現已成為一項艱巨的挑戰,需面對許多不同的技術選項,以達致所需的性能和成本目標。
評論