基于FPGA的磁浮軸承控制系統的設計與研究
0 引言
磁浮軸承(Magnetic Bearing)是以磁性力完全非接觸式支持旋轉體的軸承,其廣義上的定義是可支持直線運動物體的軸承及局部有機械性接觸的軸承。其作用原理是借磁場感應產生的磁浮力來抵抗重力場及轉軸運動時產生的作用力,將轉軸懸浮起來,使得轉子與軸承不互相接觸。
1 磁軸承控制系統
磁軸承控制系統的研究一直是磁軸承技術研究的熱點和難點,磁軸承控制系統一般包括無接觸的位移
由于控制算法往往較為復雜,在磁軸承的控制器設計上,一般都采用數字控制方法,即建立基于
2 現場可編程門陣列(FPGA)
FPGA (Field Programmable Gate Atray)是現場可編程門陣列的英文縮寫,是可編程專用集成電路(ASIC)的一種(同類的還包括CPLD)。1984年,Xilinx公司首創了現場可編程邏輯陣列(FP-GA)這一創新性技術,并于1985年首次推出了世界上第一塊FPGA芯片。在二十多年的發展過程中,FPGA的硬件體系結構和軟件開發工具都在不斷的完善且日趨成熟。從最初的1200個可用門到90年代時的幾十萬個可用門,發展到目前的數百萬門至上千萬門的單片FPGA芯片,Xilinx、Ahera等世界頂級廠商已經將FPGA器件的集成度提高到了一個新的水平。
本文使用的是Spartan-3E Starter Kit Board開發板,芯片采用Xilinx公司的Spartan-3E系列中的XC3S500E芯片。XC3S500E系統門資源包括1164個可配置單元(可換算為4656個片資源)、4個DCM、360K位塊存儲器、20個乘法器以及232個可以使用的IO端口。設計時可以采用MathWorks公司的Matlab和Xilinx公司的System Generator來負責系統級設計。
Matlab作為線性系統的一種分析和仿真工具,在工程和計算科學上有著廣泛的應用。Simulink作為Matlab的一個工具箱(toolbox),在整個的數字信號處理(Digital Signal Processing,DSP)設計中起著舉足輕重的作用。它是一個交互式的工具,可用于對復雜的系統進行建模、仿真和分析。System Generator是Xilinx公司的一個模塊集(blockset),是simulink的一個插件,其中設置了Xilinx特有的DSP功能的IP核,也包括了基本DSP函數和邏輯算符,如FIR ( Finite Impulse Re-sponse)、FFT(Fast Fourier Transform)、存儲器、數學函數、
3 磁浮軸承系統仿真
一般的磁軸承系統的結構示意圖如圖1所示,由圖可見,軸向磁浮軸承主要借助軸向電磁鐵對轉子的電磁吸力來平衡轉子自身的重量,同時對轉子的軸向運動進行約束。軸向軸承主要承載的是轉子本身的自重,屬于單方向靜態載荷,而其動態載荷相對較小,故可采用單邊工作方式的圓盤電磁鐵系統。圖2為軸向磁鐵/推力盤懸浮系統轉化的簡易結構圖。圖中,x0為軸向軸承在平衡位置的間隙,i0,ic分別為電磁鐵線圈的偏置電流和控制電流,F為電磁鐵對轉子所產生的電磁力。
在圖2所示的簡化模型中,其磁鐵和推力盤間總的吸力為:
pid控制器相關文章:pid控制器原理
評論