新聞中心

        EEPW首頁 > 智能計算 > 業界動態 > 吳恩達進軍AI醫療領域:通過心電圖可判斷患者是否心律不齊

        吳恩達進軍AI醫療領域:通過心電圖可判斷患者是否心律不齊

        作者: 時間:2017-07-17 來源:36氪 收藏

          如果我們把目光放得更為長遠,機器學習通過結合大量毫不相關的數據進行分析判斷,來搜查各類疾病的蛛絲馬跡也是充滿想象力的一件事情。

        本文引用地址:http://www.104case.com/article/201707/361801.htm

          用深度學習診斷心律不齊尚屬于醫療領域較為簡單的應用,如果把目光投到其他相對更為復雜的疾病上,我們將看到十分不同的光景。更重要的是,需要將更多的問題納入考慮范圍。

          優質的數據仍然是國外團隊的重要問題

          在上文中提到的利用人工智能進行癌癥診斷的項目時,帶領團隊的MIT教授Regina Barzilay發現了制約醫療的重要問題所在——優秀的疾病數據的匱乏。

          “你總是在焦躁地尋找信息,特別是數據。”她說道,“我是該用這種藥還是另外一種?”“這是最好的療法么?”“疾病復發的概率是多少?”……

          如果沒有可靠的臨床數據,你選擇的診斷將只能停留在純粹猜測的階段。

        吳恩達進軍AI醫療領域:通過心電圖可判斷患者是否心律不齊

          斯坦福的研究人員正在開展對于算法的訓練

          不過不同于圖像、語音識別這種相對輕松且更貼近生活的應用領域,在醫療健康這種可能生死攸關的應用層面,應用面對的一大挑戰就是取得醫生和患者的信任。

          對于非AI領域的專家來說,這些算法很容易顯得高深而晦澀。有時甚至帶領項目前進的人工智能專家,都無法完全掌握算法的運行機制。而具體到深度學習上,其更是整個機器學習中都算得上模糊難懂的分支。

          如何讓醫師和患者相信這些機制復雜的冰冷計算機能做出最有利于他們身體健康的判斷,將是AI從業者所面臨的的一大難題。

          盡管如此,依然堅信醫療領域的大革命即將帶來。

          “我們面前還要好很多工作需要著手處理,來使得這些算法進入醫療系統的工作流程。”他說道,“但我堅信十年內,醫療行業將會更多地應用到AI,變得和今天十分不同。”


        上一頁 1 2 下一頁

        關鍵詞: AI 吳恩達

        評論


        相關推薦

        技術專區

        關閉
        主站蜘蛛池模板: 百色市| 墨竹工卡县| 天峻县| 泾阳县| 小金县| 神木县| 本溪| 涿鹿县| 乾安县| 湛江市| 武隆县| 攀枝花市| 鄯善县| 仲巴县| 安宁市| 太康县| 安西县| 武城县| 盱眙县| 彭水| 安乡县| 都昌县| 芮城县| 丹寨县| 乌海市| 宁明县| 股票| 安徽省| 大余县| 红原县| 鸡东县| 始兴县| 阿瓦提县| 安徽省| 宣威市| 盐亭县| 富宁县| 商洛市| 眉山市| 花垣县| 五指山市|