橫跨多重電子應用領域、全球領先的半導體供應商意法半導體(STMicroelectronics,簡稱ST)擴大其SLLIMM? nano系列電機驅動智能功率模塊(IPM)產品陣容。除了使得應用總體尺寸最小化和設計復雜性最低化的多種可選封裝外,新產品還集成更多的實用功能和更高能效的最新的500V MOSFET。 新IPM模塊的額定輸出電流1A或2A,目標應用瞄準最高功率100W的電機驅動市場,例如冰箱壓縮機、洗衣機或洗碗機的電機、排水泵、循環水泵、風扇電機、以及硬開關電路內工作頻率小
關鍵字:
意法半導體 MOSFET
噪聲通常指任意的隨機干擾。熱噪聲又稱白噪聲或約翰遜噪聲,是由處在一定溫度下的各種物質內部微粒作無規律的隨機熱運動而產生的,常用統計數學的方法進行研究。熱噪聲普遍存在于電子元件、器件、網絡和系統中,因此噪聲測量主要指電子元件和器件、網絡和系統的熱噪聲和特性的測量。 附加相位噪聲測試技術及注意事項 本文簡單介紹了相位噪聲的定義,詳細介紹了附加相位噪聲的測試過程,給出了實際的測試結果,指出了附加相位噪聲測試過程中的一些注意事項,希望對附加相位噪聲測試人員有一定的借鑒意義。 用于4G-LTE頻段噪聲測試
關鍵字:
MOSFET 噪聲
日本 DISCO 公司的科學家們使用一種稱為關鍵無定形黑色重復吸收(key amorphous-black repetitive absorption,KABRA)的專利和正在申請專利的激光材料加工技術,可以將碳化硅(SiC)晶圓的生產率提升到原來的四倍,并且在提高產量的同時減少材料損耗。該技術適用于單晶和多晶錠,不管晶體層的取向如何。目前,SiC 功率器件在市場中的滲透較慢,主要是因為其產量小、且生產成本高。然而,KABRA 方法能夠顯著提高 SiC 器件的產量,并且應該能夠使 SiC 器件作為功率
關鍵字:
SiC
摘要 – 近幾年來,開關電源市場對高能效、大功率系統的需求不斷提高,在此拉動下,設計人員轉向尋找電能損耗更低的轉換器拓撲。PWM移相控制全橋轉換器就是其中一個深受歡迎的軟硬結合的開關電源拓撲,能夠在大功率條件下達取得高能效。本文旨在于探討MOSFET開關管在零壓開關(ZVS)轉換器內的工作特性。 1. 前言 零壓開關移相轉換器的市場定位包括電信設備電源、大型計算機或服務器以及其它的要求功率密度和能效兼備的電子設備。要想實現這個目標,就必須最大限度降低功率損耗和無功功率
關鍵字:
MOSFET ZVS
如果說中央處理器(CPU)是一臺計算機的心臟,功率半導體就是電機的心臟,它可以實現對電能的高效產生、傳輸、轉換、存儲和控制。我國發布《中國制造2025》,勾勒出未來十年產業轉型升級的整體方向與發展規劃,在此過程中,功率半導體發揮的作用不可替代。
然而,與集成電路產業相似,我國功率半導體產業的發展水平與國際先進水平也存在著巨大差距。人們常拿我國每年集成電路進口額與石油進行比較,其實如果按比例計算,我國功率半導體的進口替代能力可能更弱。隨著“節能減排”、“開發綠色
關鍵字:
功率半導體 SiC
1 GaN 功率管的發展 微波功率器件近年來已經從硅雙極型晶體管、場效應管以及在移動通信領域被廣泛應用的LDMOS 管向以碳化硅 ( SiC )、氮鎵 ( GaN ) 為代表的寬禁帶功率管過渡。SiC、GaN 材料,由于具有寬帶隙、高飽和漂移速度、高臨界擊穿電場等突出優點,與剛石等半導體材料一起,被譽為是繼第一代 Ge、Si 半導體材料、第二代 GaAs、InP
關鍵字:
GaN SiC
1 GaN 功率管的發展 微波功率器件近年來已經從硅雙極型晶體管、場效應管以及在移動通信領域被廣泛應用的LDMOS 管向以碳化硅 ( SiC )、氮鎵 ( GaN ) 為代表的寬禁帶功率管過渡。SiC、GaN 材料,由于具有寬帶隙、高飽和漂移速度、高臨界擊穿電場等突出優點,與剛石等半導體材料一起,被譽為是繼第一代 Ge、Si 半導體材料、第二代 GaAs、InP
關鍵字:
GaN SiC
問題1:最近,我們公司的技術專家在調試中發現,MOSFET驅動電壓過高,會導致電路過載時,MOSFET中電流過大,于是把降低了驅動電壓到6.5V,之前我們都是在12V左右。這種做法感覺和您在文章里第四部份似乎很相似,這樣做可行么? 問題分析: 系統短路的時候,功率MOSFET相當于工作在放大的線性區,降低驅動電壓,可以降低跨導限制的最大電流,從而降低系統的短路電流,從短路保護的角度而言,確實有一定的效果。然后,降低驅動電壓,正常工作時候,RDSON會增大,系統效率會降低,MOSFET的溫度會升高,
關鍵字:
MOSFET 芯片
MOSFET因導通內阻低、開關速度快等優點被廣泛應用于開關電源中。MOSFET的驅動常根據電源IC和MOSFET的參數選擇合適的電路。下面一起探討MOSFET用于開關電源的驅動電路。 在使用MOSFET設計開關電源時,大部分人都會考慮MOSFET的導通電阻、最大電壓、最大電流。但很多時候也僅僅考慮了這些因素,這樣的電路也許可以正常工作,但并不是一個好的設計方案。更細致的,MOSFET還應考慮本身寄生的參數。對一個確定的MOSFET,其驅動電路,驅動腳輸出的峰值電流,上升速率等,都會影響MOSFET的
關鍵字:
MOSFET 驅動電路
1 GaN 功率管的發展 微波功率器件近年來已經從硅雙極型晶體管、場效應管以及在移動通信領域被廣泛應用的LDMOS 管向以碳化硅 ( SiC )、氮鎵 ( GaN ) 為代表的寬禁帶功率管過渡。SiC、GaN 材料,由于具有寬帶隙、高飽和漂移速度、高臨界擊穿電場等突出優點,與剛石等半導體材料一起,被譽為是繼第一代 Ge、Si 半導體材料、第二代 GaAs、InP
關鍵字:
GaN SiC
功率放大電路是一種以輸出較大功率為目的的放大電路。因此,要求同時輸出較大的電壓和電流。管子工作在接近極限狀態。一般直接驅動負載,帶載能力要強。 功率MOSFET是較常使用的一類功率器件。“MOSFET”是英文MetalOxideSemicoductorFieldEffectTransistor的縮寫,譯成中文是“金屬氧化物半導體場效應管”。它是由金屬、氧化物(SiO2或SiN)及半導體三種材料制成的器件。所謂功率MOSFET(PowerMOSFET)是指它能輸出較大的工作電流(幾安到幾十安),用于功
關鍵字:
MOSFET 功率放大電路
第一代半導體材料是元素半導體的天下,第一代半導體材料是化合物半導體材料,然而隨著半導體器件應用領域的不斷擴大,特別是特殊場合要求半導體能夠在高溫、強輻射、大功率等環境下依然堅挺,第一、二代半導體材料便無能為力,于是賦予使命的第三代半導體材料——寬禁帶半導體材料誕生了。
關鍵字:
寬禁帶半導體 SiC
有鑒于全球環保意識抬頭,碳化矽(SiC)與氮化鎵(GaN)兩種功率轉換材料備受矚目。其中,碳化矽掌握早期開發優勢,其功率模組在再生能源與車用電子領域,商機已紛紛涌現。而主要鎖定低功率市場的氮化鎵,則將緩步進軍中功率市場。
可以彌補天然能源不足缺口的再生能源設備,為聚焦于中功率、高功率應用的碳化矽創造大量需求。另一方面,近期豐田汽車(Toyota)在電動車中導入碳化矽(SiC)元件的測試結果也已出爐,其在改善能源效率、縮小電源控制系統(PCU)尺寸上的效果,明顯勝過矽元件。
臺達電技術長暨總
關鍵字:
SiC GaN
ROHM新聞發布會上,首先宣布最新的第三代SiC技術,包括SiC MOSFET、SiC SBD(肖特基勢壘二極管)、SiC模塊,提供更高的功率密度可靠性和更高的能效。據悉,相比平面(planar)柵型SiC MOSFET,新一代SiC MOSFET在整個溫度范圍內減少Rdson 50%,在同樣芯片尺寸下減少35%輸入電容器。 ROHM的德國發言人(左1)介紹了車用外部LED燈,ROHM方案精度更高,用于車前燈。還有LED矩陣控制器,使電路配置更容易、
關鍵字:
ROHM SiC
技術創新是推動產業發展的永恒動力,以碳化硅、氮化鎵為代表的第三代寬禁帶半導體材料憑借著其優異的特性得到了世界各國的高度重視,從國際競爭角度看,美、日、歐等發達國家已將第三代半導體材料列入國家計劃,并展開全面戰略部署,欲搶占戰略制高點。
關鍵字:
半導體 SiC
碳化硅(sic)mosfet介紹
您好,目前還沒有人創建詞條碳化硅(sic)mosfet!
歡迎您創建該詞條,闡述對碳化硅(sic)mosfet的理解,并與今后在此搜索碳化硅(sic)mosfet的朋友們分享。
創建詞條
關于我們 -
廣告服務 -
企業會員服務 -
網站地圖 -
聯系我們 -
征稿 -
友情鏈接 -
手機EEPW
Copyright ?2000-2015 ELECTRONIC ENGINEERING & PRODUCT WORLD. All rights reserved.
《電子產品世界》雜志社 版權所有 北京東曉國際技術信息咨詢有限公司
京ICP備12027778號-2 北京市公安局備案:1101082052 京公網安備11010802012473