新聞中心

        EEPW首頁 > 編輯觀點 > AI加持的物聯網:實現你對未來生活的一切幻想

        AI加持的物聯網:實現你對未來生活的一切幻想

        作者:陳玲麗 時間:2020-05-13 來源:電子產品世界 收藏

        人工智能和密不可分。人工智能的整個想法是從設備捕獲更多可行的數據,就像我們自己的人類意識一樣,人工智能可以依靠與人類相似的感覺來將他們的思維過程與我們的物理世界聯系起來。

        本文引用地址:http://www.104case.com/article/202005/413050.htm

        準確地說,人工智能更多是關于使機器具有智能行為,的功能是使這些機器連接起來。

        物聯網幫助感知世界

        物聯網提供了對傳感器的便捷訪問,從而使感知到世界 —— 紅外“眼睛”使可以“看到”熱量變化,以及標準的對象檢測、計數和分類;超聲波“聽覺”,可以訪問超出人類頻譜的頻率范圍;加速度計可捕捉“觸覺”運動,其細節要比我們自己的指尖好得多;顆粒和化學傳感器提供了靈敏的“鼻子”。在許多不同的地方,獲得比我們人類更多的感覺輸入。

        通過物聯網捕獲數據的能力在過去五年中爆炸性的大規模發展,傳感器現已應用于幾乎所有領域,這表明可以從每個事物或流程中實時收集無限多個數據。物聯網設備是制造環境以及客戶服務部門中數據收集過程的第一線,任何具有芯片組的設備都可以連接到網絡并開始24/7流數據傳輸。

        AI增強了這些物聯網驅動的感覺輸入的感知和意義。物聯網有效地測量并指示物理數據屬性,而AI是使您能夠感知物理數據代表什么的大腦。

        640.png

        低成本分布式、計算功能(云)的廣泛可用性、開源軟件的發展、機器學習的進步以及移動驅動的先進微電子(ARM)功能的出現,為最終連接提供了許多點,使AI成為現實。

        隨著廉價傳感器和低成本網絡連接的出現,物聯網設備的數量正在激增。根據Gartner的調查,到2020年,全球將有超過200億臺互聯設備。物聯網設備的持續激增導致需要存儲和保留的數據激增,但物聯網領域的進步仍然受到可計算數據的速度和效率以及價值提取的約束。企業被這些設備產生的海量數據所淹沒,他們希望人工智能來幫助管理這些設備,并從這些大量的數據中獲得更多的見地和智慧。

        有趣的是,當前人工智能技術的興起可能為當今數字世界所面臨的數據泛濫提供了解決方法。隨著這兩個領域的迅速創新發生,我們可以從它們的融合道路中期待什么?

        AI幫助物聯網實現想象

        2016年7月,軟銀斥資243億英鎊收購了微芯片巨頭ARM。軟銀總裁孫正義認為,物聯網將引領下一輪技術爆炸,他指出:“物聯網與人工智能之間的關系就像眼睛和大腦使生物進化的關系。物聯網正在爆炸”。

        從1956年人工智能學科被正式提出至今,人工智能的技術一直在不斷發展,但直到近幾年物聯網產業逐步走向成熟后,人工智能的發展才迎來了又一次發展的春天。如今,利用AI來幫助進行實時分析的互聯設備已經面世,并且廣泛采用的趨勢正在上升。例如Nest等智能恒溫器,它們利用AI來學習用戶的溫度偏好并相應地調整能源使用。

        另外,通過顯式編程編寫算法的傳統方法太耗時且容易出錯,以至于許多物聯網設備都無法理解。為了有效地分析IoT數據,企業正在轉向基于機器學習的AI來尋找模式和相關性,以實現IoT的承諾。

        在企業部門中,AI已經通過幫助實時決策制定了標志。AI的功能對于企業同時有效處理與這些組件相關的事務(時間、金錢和風險)特別有價值。這可以包括銷售預測,信息管理和各種形式的自動化。

        640.jpg

        調查顯示,近一半(49%)的受訪者已經在他們的物聯網應用中使用人工智能。 物聯網和AI方向的機會繼續增長。現在,業界將這種融合稱為“ AIoT”。最后一次如此大的融合發生在1990年代后期,手機和互聯網的碰撞改變了人類歷史的進程,人工智能與物聯網的融合將帶來更大范圍的類似革命。

        硬件制造商和解決方案提供商已經在全力以赴,以利用這種技術融合并在不斷發展的工業環境中處于有利地位。諸如亞馬遜之類的創新公司正在為員工提供即將過時的工作職能方面的培訓和再教育機會,這種技術的融合正在推向市場。

        實際意義上來說,AI在某種程度上可以幫助物聯網出現的突發情況進行迅速應對,這才是當今互聯網時代的智能優勢。我們可以看到在許多問題出現的時候,解決方案也相應出現,這些解決方案的計算能力也將隨著人類的需求的改變而進行延伸和發展。

        人工智能在發展的早期,由于數據量少、運算速度跟不上等原因,一直發展比較緩慢。但近二年隨著物聯網的發展,促進了大數據和云計算技術的發展,云計算和大數據技術的進步,又使物聯網產生的大量數據的存儲和計算沒有了后顧之憂,而AI技術可以使這些數據發揮更大的作用。

        物聯網、大數據、云計算的發展為AI的發展提供了豐富的數據,而AI的發展也使得物聯網時代變得更加智慧。但是,對AI和IoT的全面優化還相距遙遠,在解決問題和信息可以改善所有利益相關者成果的情況下,這兩種技術現在正在跨行業組合。

        隨著物聯網、人工智能的相互促進和滲透,各個行業也發生了一些變化,智能制造、智慧城市、智慧交通、智慧工廠、智能家居等大批“智能化”的新業態不斷出現。

        揭秘AI和物聯網的力量

        你對AI和物聯網如何統治科技世界有了解嗎?以下是一些重要的統計數據:

        · Gartner表示,到2022年,將有80%的企業物聯網項目將AI作為主要組成部分。

        · 41%的消費者認為人工智能將改善他們的生活。

        · 每秒有127個IoT設備連接到互聯網。

        · Statista報告稱,到2025年,預計全球將有440億個IoT設備。

        物聯網和人工智能的結合正在改變許多行業以及企業與客戶之間的關系。企業現在可以通過物聯網收集數據并將其轉化為有用和有價值的信息。

        當今企業在人工智能和物聯網方面面臨的共同挑戰是物聯網數據的應用、可訪問性和分析。如果您有來自各種來源的數據池,您可以使用這些數據進行一些統計分析。但是,如果你想在預測未來事件中采取積極主動的行動,一個企業需要學習如何辨別這種數據和分析過程。

        企業正在以多種不同的方式實施支持人工智能的物聯網系統:有關解決方案公司開始提供打包好的代碼和模板,其中包括針對特定應用領域(如航運和物流、制造、能源、環境、建筑和設施運營)的測試模型;其他公司正在創建客戶解決方案,構建和培訓自己的模型,利用云供應商的外部CPU能力。

        隨著消費者、企業和政府開始在各種環境中部署物聯網,我們的世界將發生巨大變化。它已經迅速地改變了從零售到供應鏈再到醫療保健的一切。

        人工智能驅動的物聯網對各個行業的影響:

        · 智能建筑:智能傳感器通過預防火災、洪水或短路等事故來預測事件并提高安全性。

        · 智能家居:智能家居的出現旨在為我們的生活提供一個機會,讓我們的設備無論在哪里都能被控制。在美國,智能家居市場預計到2021年將覆蓋28%的家庭。

        · 航空飛機:傳感器已經在飛機上被用來監測和預防各種錯誤和風險,甚至在它們發生之前。

        · 石油勘探:這種類型的機器在無法正常工作時會給公司造成巨大損失,大多數石油工業公司傾向于在石油鉆探機械上投入大量資金。得益于物聯網,智能傳感器現在可以很容易地連接到機器上。這樣做意味著提供預防性維護分析,從而降低運營成本。

        · 自動駕駛:自動駕駛系統結合了專用硬件,可以實現GPS、聲納、攝像機和前視雷達,從而可以充分利用數據并將其耦合到神經網絡體系結構中。這就像一個自封閉系統,可以從傳感器收集信息,并進一步使用神經網絡模型來確定汽車運動的下一個變化。

        · 健康監測系統:構建醫療設備來監測、診斷身體狀況。用傳感器收集信息,AI來預測身體狀況。

        · 智能電網:利用物聯網設備和傳感器網格的優勢,它們可以在系統中收集和傳輸數據,從而可以自動調節電流。可以實時將問題通知遠程管理器,如果有問題可以立即采取行動。

        · 供應鏈:解決運營物流網絡的復雜性,正確實施AI可以幫助公司做出更明智、更迅速的決策。通過預測期望值,他們可以調整貨物數量并將貨物調配到預計最大需求的位置,降低運營成本。

        · 智能倉庫:智能倉庫是完全自動化的設施,其中大部分工作是通過自動化或軟件來完成的。在此過程中繁瑣的任務得以簡化,操作變得更具成本效益。阿里巴巴和亞馬遜已經通過使用自動化改造了他們的倉庫。亞馬遜最近推出了自動裝箱客戶訂單的機器。在亞馬遜倉庫中,機器人與人類并肩工作以提高生產力和效率。

        物聯網設備的普及正使未來成為一個緊密相連、即時獲取信息的世界。現在需要人工智能來管理所有這些設備,并理解這些設備返回的數據。從某種程度上講,人工智能和物聯網是互利共生的,并將繼續保持相互交織的關系向前發展。



        關鍵詞: AI 物聯網

        評論


        相關推薦

        技術專區

        關閉
        主站蜘蛛池模板: 陕西省| 泰来县| 莫力| 鹤山市| 博白县| 宁武县| 沈丘县| 伊川县| 边坝县| 静海县| 余姚市| 永顺县| 洪江市| 湘潭市| 浦北县| 石阡县| 兴仁县| 吴旗县| 江北区| 乡城县| 内乡县| 天柱县| 平度市| 栾川县| 调兵山市| 富蕴县| 潼关县| 鲁山县| 和顺县| 赤水市| 承德市| 台南市| 潼南县| 博客| 仙桃市| 彰化市| 东阳市| 遂宁市| 修文县| 昆明市| 武山县|