新聞中心

        EEPW首頁 > 消費電子 > 業界動態 > 人工智能十年:風起于青萍之末

        人工智能十年:風起于青萍之末

        作者: 時間:2015-12-24 來源:網易科技報道 收藏
        編者按:人工智能已經走出了象牙塔,在企業和消費者端的應用有了顯著進步。但這仍然不夠。如何讓消費者手中的設備擁有盡可能多的處理能力,需要技術和應用的雙端突破,這也正是人工智能領域創業公司的機會和任務所在。

          一、悄然興起

        本文引用地址:http://www.104case.com/article/284830.htm

          “”涵蓋了很多前沿技術和分支,卻很難用一句話來定義,因為它一直處在發展當中。比如,一些在過去看來很“”的事情,現在卻變成了簡單的“機械重復”,像是數字的高速計算、圖像的處理等。但總體上來看,“人工智能”的本質和目的一直沒有發生太多變化,那就是“完成人類的部分腦力工作”。

          20世紀60年代開始,就有許多科幻電影和科幻小說描述著人類對“人工智能”的憧憬和恐懼,比如斯皮爾伯格的知名影片《人工智能》。不過在現實中,長久以來,受到技術、科技發展和應用層面的限制,人工智能只是一件人人都在說,都以為別人在做,但事實上卻沒多少人知道該怎么做的事——無論在學術研究層面還是在應用層面都是如此。

          人工智能曾經在20世紀90年代互聯網泡沫破裂前風靡一時,到了21世紀伊始卻變成了一個禁忌,大家開始懷疑它是否存在。而到了2011年,美國資本市場再度為人工智能而瘋狂。風險投資機構和頂級科技公司們開始頻繁投資這個領域的創業公司,投資范圍從應用層面的機器人、增強現實,到底層技術層面的深度學習算法、神經網絡芯片等,人工智能項目也遍地開花。比如,Google接連投資了虛擬現實創業公司Magic Leap,收購了人工智能公司DeepMind;Facebook收購語音識別公司Wit.ai,等等。

          除了投資外部團隊之外,像IBM、Google、Facebook和百度等國內外科技巨頭們也紛紛加強自己的人工智能方面的專業團隊,招募了一批人工智能尤其是深度學習相關領域的科學家,如深度學習鼻祖之一Geoffrey Hinton加入了Google,Yann LeCun加入了Facebook擔任人工智能實驗室負責人,Andrew Ng(吳恩達)加入百度負責深度學習研究院等。

          二、驅動人工智能發展的內外動因

          “人工智能”的再度興起并非偶然,外部環境和人工智能自身都在發生演化。我們認為,驅動人工智能領域發展到現在程度的外部動因有:

          1.傳感器能力和數量的大幅提升:LIGA等微電子技術的日趨成熟,推動著傳感器的能力有了質的飛躍,而大量智能設備的出現則進一步加速了傳感器領域的繁榮。這些延伸向真實世界各個領域的觸角是機器感知世界的基礎,而感知則是智能實現的前提之一。


        人工智能十年:風起于青萍之末


          2.計算成本的大幅下降:摩爾定律使得計算成本在迅速下降,同時云計算的出現、GPU的大規模應用使得集中化的數據計算能力變得前所未有得強大。大規模的的集中式計算使得人工智能的發展速度指數級加快。過去僅訓練深度神經網絡模型對某一物體的認知就要花費近一年時間,而現在這個時間被縮短到幾天內。


        人工智能十年:風起于青萍之末


          3.海量數據的出現:根據預計,2015年全球產生的數據總量將達到十年前的20多倍。如此海量的數據給機器學習的提供了足夠多的素材(但是需要注意的是,在其中真正有標注的數據不超過總量的10%)。


        人工智能十年:風起于青萍之末


          當然,更重要的驅動因素是內因——算法的進步。當下人工智能領域最先進、應用最廣泛的核心技術是深度神經網絡(深度學習)。而且,直到2006年,深度神經網絡才得到快速發展,逐漸成為人工智能領域的主流研究方向。

          21世紀人工智能的里程碑事件之一是,2006年Geoffrey Hinton發表的論文《A fast learning algorithm for deep belief nets》。他在此文中提出的深層神經網絡逐層訓練的高效算法,讓當時計算條件下的神經網絡模型訓練成為了可能,同時通過深度神經網絡模型得到的優異的實驗結果讓人們開始重新關注人工智能。之后,深度神經網絡模型成為了人工智能領域的重要前沿陣地,深度學習算法模型也經歷了一個快速迭代的周期,Deep Belief Network、Sparse Coding、Recursive Neural Network, Convolutional Neural Network等各種新的算法模型被不斷提出,而其中卷積神經網絡(Convolutional Neural Network,CNN)更是成為圖像識別最炙手可熱的算法模型。

          目前,隨著GPU和CPU集群的出現,云端的計算資源已經慢慢不再是人工智能的發展瓶頸。而人工智能算法模型的進一步豐富和改進以及本地化人工智能的實現成為了人工智能新的主要發展方向。

          三、人工智能的三步走

          從人工智能的整個發展歷程來看,按照應用場景和人工智能資源的集中度,可以大致分成三個階段。

          第一階段:實驗室研究階段,這一階段的人工智能資源高度集中。人工智能在2011年前的發展大致還處于實證研究階段,資源高度集中在國家或大學資助的研究機構中,用于算法模型的訓練和研究,人工智能還只能為極少數人接觸到。這一階段大量的工作除了在算法模型本身的研究外,還包括建立計算能力本身。

          第二階段:企業應用階段,這一階段的人工智能資源被少部分科技巨頭掌握。在人工智能表現出一定的實際應用價值后,科技巨頭們一擁而上,紛紛希望在這個領域取得突破。在少部分核心企業掌握了大規模的人工智能資源以后,其它小規模的企業一般會利用這些核心企業提供的人工智能資源接口和其支持的人工智能應用為自身的發展提供服務。由于掌握大規模的計算資源是這一模式的前提,因此這一階段人工智能資源的集中度仍然非常高,而這將是人工智能在企業場景下的主要應用形式,即集中計算,分布使用。

          第三步:個人應用階段,這一階段的人工智能資源被分散到個人手中。顯然,依賴于云端大規模計算資源的人工智能算法限制著人工智能在消費者場景的應用,因為集中式計算意味著巨量的網絡資源消耗,并且因為網絡問題,難以在消費者應用場景中有穩定的表現。因此,人工智能的本地化,也就是從集中走向分布(細化到智能手機、可穿戴設備等)實現將是人工智能在消費者場景中得到普及的關鍵一步。伴隨著人工智能的本地化實現,將使得人工智能真正延展到手持設備、家用電器、汽車等消費級應用。


        人工智能十年:風起于青萍之末


          人工智能本地化實現的難點在于本地的計算能力在如今動輒幾個G的算法模型面前杯水車薪、無能為力。一部iPhone 6手機采用一般的CNN算法去處理一張200*200像素圖像的ImageNet千分類問題需要的時間是300毫秒,但這樣的處理速度對于用戶體驗來說是災難性的。要提高本地的圖像識別處理速度,目前能夠想到的途徑有三條:一是精簡算法模型,根據實際的場景適配需要的精度,讓模型盡可能簡化,二是提升CPU的計算能力。目前的智能手機CPU已經在20nm制程以下,按照傳統路線,CPU提升的極限可能在7-10nm,這其實非常有限。而且,大功耗也是一般移動設備難以承受的,因此只有為人工智能算法模型重新開發專門的芯片才有可能滿足本地的計算要求。

          從這個角度來看,人工智能在消費者場景實現的關鍵是對算法模型優化和用戶場景的綜合理解,以及底層硬件的設計制造。而人工智能的企業應用則會是巨頭們的游戲。

          四、人工智能的產業生態

          人工智能產業主要由底層可應用技術(圖像識別、語音識別、自然語言處理、硬件技術等)、計算資源(大規模GPU集群)、基礎數據服務,以及企業/政府/消費者應用組成。遵循產業的一般發展規律,人工智能的發展路徑仍然是從底層可應用技術的成熟開始,再到商業化計算資源、數據服務等基礎設施的完善,最后形成企業和消費者應用的繁榮。


        人工智能十年:風起于青萍之末


          目前還是人工智能的早期階段,我們需要關注的是三方面的發展:一方面是底層可應用技術的突破,包括算法的和硬件的;另一方面是中間的數據服務和計算資源利用的進步;最后也是最重要的是,基于現有技術的應用場景的發掘。其中,底層技術不一定是“獨門秘技”,能夠把底層技術商業化的公司一定是因為自身的成本曲線優于大部分用戶的成本曲線。如果不滿足這個特性,那么某些企業即使有短暫的技術領先,最后都難以實現大規模商業化。

          五、風起于青萍之末

          乍看上去,人工智能是個巨頭間的游戲,巨頭企業無論從資本、人才還是技術積累上似乎都更有優勢。然而事實未必如此。如果以汽車行業做類比,汽車電動化的先驅并非寶馬、大眾這樣的傳統汽車巨頭,而是特斯拉這樣的“小”公司。這其中的原因在于,大公司面對創新變革時,往往看不上小機會,因為小機會對它們的吸引力實在太小了。巨頭們往往喜歡憋大招,喜歡一步到位,從而徹底甩開競爭對手。但是創新、特別是針對大眾消費者的創新卻是循序漸進的,所謂“大招”中其實包含著不少對用戶需求的錯誤假設。小步快跑,不斷尋求和用戶互動,積跬步終能致千里。因此,創業公司在人工智能的創新變革中反而會更有機會。從Google和Yahoo在搜索領域,到Facebook和MySpace在社交領域,再到Apple和Nokia在手機領域,最終變革的主導力量其實都是“小”公司。

          基于這個方向判斷,有志于在人工智能領域挑戰巨頭的創業者們需要先想清楚三件事:

          一、人工智能改變了什么。偉大的產品或技術一定是改變了消費者在某些場景下的行為,有沒有都一樣的產品,很難給消費者使用它的理由。人工智能相關產品核心是要能夠替代一部分人的功能或者提高人的效率,那么在這個大前提下要考慮兩個小問題,第一個是,產品對應的用戶場景下人的介入頻次高不高,頻次決定了這個產品的天花板。第二個是,這個應用場景下替代掉的人的價值有多大,顯然替代掉的這部分價值轉化成了產品的內在價值。最后不妨做一個乘法,把產品所替代的工作/操作的頻次乘以每次工作/操作能夠產生的價值,這個乘積越大說明人工智能在該應用場景中發揮的作用越大。

          二、該方向上的人工智能是否能夠實現。人工智能的許多技術都還沒到非常成熟的地步。之前提到,創業者的優勢在于小步快跑,因此在人工智能還不成熟的領域,一味追求技術上的突破來解決所有問題并不可取。無法解決一個通用場景就從幾個專門的場景先入手,無法做出一個“萬能”的產品不妨先做出一個可以用的產品。只有用戶使用了產品并給予反饋,才可能真正知道自己產品的缺陷和下一步的方向。

          三、人工智能能否成為該產品的核心競爭力。核心競爭力是一個產品的拳頭,如果拳頭不硬,這個產品無疑打開不了市場。因此產品的核心競爭力如果是人工智能,那么該方面的人工智能必須是完美適用于該特定場景的。如果產品倚重的是還存在很多瑕疵的人工智能技術,那么這個產品本身的被接受程度就會很不理想。但不要籠統地認為人工智能技術的某些局限會成為產品的絆腳石。以特斯拉電動車為例:電池性能至今還在很多方面限制著電動車的表現,依然有很多用戶青睞特斯拉,原因是特斯拉的核心競爭力在于它出色的啟動、智能化的駕駛體驗和簡易的維護,電池盡管是一個短板但不是核心功能。因此,關鍵仍然在于定義自己的核心競爭力,并確保在核心競爭力上的技術是經得起推敲的。

               人工智能之風,在未來會起于青萍之末。



        關鍵詞: 人工智能

        評論


        相關推薦

        技術專區

        關閉
        主站蜘蛛池模板: 苏尼特左旗| 乌审旗| 伊春市| 萍乡市| 潍坊市| 五台县| 乐都县| 义马市| 金塔县| 昌平区| 巴彦淖尔市| 宿迁市| 夹江县| 祥云县| 托克逊县| 新河县| 维西| 华蓥市| 罗定市| 临清市| 太湖县| 镇赉县| 六盘水市| 安顺市| 平阴县| 和林格尔县| 饶阳县| 思南县| 太和县| 阿拉尔市| 台南县| 南城县| 宁陕县| 安远县| 加查县| 巴里| 翁源县| 宁安市| 淄博市| 巩义市| 六枝特区|