新聞中心

        EEPW首頁 > 電源與新能源 > 設(shè)計(jì)應(yīng)用 > IGBT單管數(shù)據(jù)手冊(cè)參數(shù)解析——下

        IGBT單管數(shù)據(jù)手冊(cè)參數(shù)解析——下

        作者: 時(shí)間:2023-07-17 來源:英飛凌 收藏

        是大家常用的開關(guān)功率器件,本文基于單管的數(shù)據(jù)手冊(cè),對(duì)手冊(cè)中的一些關(guān)鍵參數(shù)和圖表進(jìn)行解釋說明,用戶可以了解各參數(shù)的背景信息,以便合理地使用。

        本文引用地址:http://www.104case.com/article/202307/448686.htm

        在上篇《IGBT單管數(shù)據(jù)手冊(cè)參數(shù)解析——上》中,我們介紹了IGBT的命名、最大額定值及靜態(tài)參數(shù)。今天我們介紹動(dòng)態(tài)特性、開關(guān)特性及其它參數(shù)。

        4.動(dòng)態(tài)特性

        ●   輸入電容,輸出電容和反向傳輸電容Cies,Coes和Cres

        輸入電容Cies,是Cres同CGE之和,是設(shè)計(jì)驅(qū)動(dòng)的一個(gè)關(guān)鍵參數(shù)。它在每個(gè)開關(guān)周期進(jìn)行充電和放電,它定義了柵極驅(qū)動(dòng)損耗。另一方面,CGE減少了在半橋拓?fù)渲杏捎陔娏髁鬟^電容Cres而導(dǎo)致的寄生導(dǎo)通的風(fēng)險(xiǎn)。

        輸出電容Coes,是Cres同CCE之和。它對(duì)EMI有很大的影響,它影響集電極-發(fā)射極的dV/dt。

        反向傳輸電容Cres,也稱為米勒電容,它決定了IGBT開關(guān)時(shí)電流和電壓之間的交叉時(shí)間,影響著開關(guān)損耗。Cres/CGE對(duì)集電極-發(fā)射極的dV/dt和VGE之間的耦合效應(yīng)有很大影響,降低該比率可實(shí)現(xiàn)快速開關(guān)能力,并避免器件不必要的寄生導(dǎo)通。

        1689162321910800.png

        14.png

        ●   柵極電荷QG

        柵極電荷描述了驅(qū)動(dòng)?xùn)艠O電壓VGE到一定值(通常是15V)所需的電荷量。它是驅(qū)動(dòng)損耗的主要因素,并影響到整個(gè)驅(qū)動(dòng)電路的設(shè)計(jì)。驅(qū)動(dòng)損耗可以通過以下公式得出。

        15

        1689162229835759.png

        17.png

        上圖顯示了典型的柵極電荷曲線,從曲線中可以得到驅(qū)動(dòng)VGE到某一數(shù)值所需的QG值。QG是負(fù)載電流和集電極-發(fā)射極電壓的一個(gè)函數(shù)。通常情況下,它是針對(duì)IC的額定值和不同的VCE值繪制的。

        ●   內(nèi)部發(fā)射極電感LE

        LE是總換流回路電感的一部分,它通常同關(guān)斷電壓過沖和開關(guān)損耗有關(guān)。因此,該值需要盡量的小,特別是對(duì)于在高開關(guān)頻率下運(yùn)行的IGBT。

        注意:內(nèi)部發(fā)射極電感上的電壓降無法從外部測(cè)量,但在考慮最大關(guān)斷電壓過沖時(shí),需要考慮這部分電壓。

        5.開關(guān)特性

        開關(guān)性能在很大程度上取決于幾個(gè)因素,例如:集電極電流、集電極-發(fā)射極電壓、溫度、外部柵極電阻以及電路板設(shè)計(jì)和寄生參數(shù),特別是電感和電容。因此,在不同制造商的零件之間根據(jù)數(shù)據(jù)手冊(cè)的數(shù)值進(jìn)行直接比較可能不是一個(gè)正確的比較。因此,強(qiáng)烈建議通過應(yīng)用測(cè)試和適當(dāng)?shù)谋碚鱽碓u(píng)估這些器件。

        下述這些參數(shù)通常根據(jù)國(guó)際標(biāo)準(zhǔn)的定義進(jìn)行測(cè)量和評(píng)估,如JEDEC或IEC60747-(2007)。

        t(d)on:從VGE的10%到IC的10%

        tr:從IC的10%到IC的90%

        t(d)off:從VGE的90%到IC的90%

        tf:從IC的90%到IC的10%

        其中VGE是柵極電壓,IC是集電極電流。

        18.png

        開關(guān)損耗Eon和Eoff是IGBT開關(guān)期間VCE和IC乘積的積分,IGBT的拖尾效應(yīng)也需考慮在內(nèi)。

        遵循IEC標(biāo)準(zhǔn),Eon和Eoff定義如下:

        Eon:tsw從10%的VGE開始,到2%的VCE結(jié)束。

        Eoff:tsw從90%的VGE開始,到2%的IC結(jié)束。

        Ets:總開關(guān)損耗,是Eon和Eoff之和。

        19.png

        通常情況下,用作測(cè)量Eon和Eoff的測(cè)試裝置如下圖示,上管IGBT同下管被測(cè)IGBT是相同的,即下管被測(cè)IGBT關(guān)斷后,是由同樣規(guī)格的上管IGBT的反并二極管做續(xù)流。

        20.png

        對(duì)于用于諧振應(yīng)用的IGBT(電磁爐、變頻微波爐、工業(yè)焊機(jī)、電池充電),在數(shù)據(jù)手冊(cè)中只包含關(guān)斷參數(shù)的值。之所以這樣做,是因?yàn)檫@些器件在開通時(shí)通常以軟開關(guān)方式工作,因此開通參數(shù)的值沒有用。

        下圖是IHW40N120R5的數(shù)據(jù)手冊(cè)。

        1689162181103583.png

        對(duì)于共封裝帶續(xù)流二極管和逆導(dǎo)型IGBT(IKx和IHx),反并聯(lián)續(xù)流二極管的電氣特性也在數(shù)據(jù)手冊(cè)中定義。

           ○ 反向恢復(fù)時(shí)間trr和反向恢復(fù)電荷Qrr

           ○ 反向恢復(fù)電流峰值Irrm

           ○ 在規(guī)定的時(shí)間內(nèi),反向恢復(fù)電流的峰值下降率dIrr/dt

           ○ 反向恢復(fù)損耗Erec

        1689162168430380.png

        1689162156793941.png

        由于反并聯(lián)二極管在應(yīng)用中經(jīng)常充當(dāng)續(xù)流二極管,它的恢復(fù)特性對(duì)IGBT的開通非常重要,特別是在高開關(guān)頻率應(yīng)用中,其性能受到二極管正向電流IF、正向電流變化率dIF/dt以及工作溫度的強(qiáng)烈影響。

        6.其他參數(shù)

        ●  輸出特性

        輸出特性表示電壓VCE是IC的函數(shù),它通常在幾個(gè)不同柵極電壓VGE下給出。這些曲線取決于結(jié)溫,因此在數(shù)據(jù)表中提供了兩張圖,一張是在室溫25°C時(shí);另一個(gè)是在高溫150°C或175°C時(shí)。

        如果柵極電壓VGE設(shè)置在10V以下,負(fù)載電流會(huì)在某一數(shù)值上趨于飽和。為了避免IGBT的飽和,也就是所謂的線性工作區(qū),建議VGE電壓至少為15V。

        快速開關(guān)器件通常具有較高的跨導(dǎo)。因此,較低的驅(qū)動(dòng)電壓如+12V也可以考慮,主要是為了實(shí)現(xiàn)以下好處。

        1.增加短路耐受時(shí)間以提高可靠性

        2.減少IGBT關(guān)斷時(shí)的電壓過沖現(xiàn)象

        3.減少在高頻率下運(yùn)行的柵極驅(qū)動(dòng)器的驅(qū)動(dòng)損耗

        也應(yīng)考慮較低柵極電壓的缺點(diǎn):較高的導(dǎo)通損耗和較高的開關(guān)損耗。

        24.png

        24-1.png

        ●  短路耐受時(shí)間tSC

        tSC定義了IGBT在短路條件下可以承受的,不發(fā)生故障的時(shí)間。它是在結(jié)溫150°C或175°C,柵極電壓VGE=+15V和一定的母線電壓VCC的情況下定義的。該參數(shù)的母線電壓通常對(duì)于600V/650V的器件是400V,對(duì)于1200V的器件是600V。

        1689162120394086.png

        典型的Ⅰ類短路(指器件在開通前就已經(jīng)短路)波形如下圖示:

        1689162041963155.png

        集電極電流在母線電壓和環(huán)路電感的影響下迅速上升。之后,它保持在特定柵極電壓下的飽和電流值附近。IGBT上的電壓降與母線電壓相同。因此,在芯片中產(chǎn)生了巨大的功率損耗,導(dǎo)致結(jié)溫快速上升。盡管由于較高的結(jié)溫,電流略有下降,但功率損耗是非常高的,并會(huì)損壞芯片。為了避免IGBT的損壞,在短路過程中,有必要對(duì)IGBT進(jìn)行相應(yīng)的保護(hù)。

        一般來說,短路耐受時(shí)間因技術(shù)而異,它表明了IGBT的耐受程度。請(qǐng)注意,它通常是技術(shù)權(quán)衡優(yōu)化的結(jié)果。更高的短路耐受時(shí)間是通過限制載流子密度以及IGBT的跨導(dǎo)來獲得的。但這將降低開關(guān)和導(dǎo)通性能。

        ●  短路電流ISC

        短路電流是為有短路能力的IGBT定義的。

        1689162024906362.png

        在數(shù)據(jù)手冊(cè)中,下圖顯示了ISC和tSC與柵極電VGE的關(guān)系。對(duì)于較高的VGE,ISC會(huì)增加,而tSC反而會(huì)減少,這與輸出特性有關(guān)。

        28.png

        29.png

        安全工作區(qū)(SOA)



        關(guān)鍵詞: 英飛凌 IGBT

        評(píng)論


        相關(guān)推薦

        技術(shù)專區(qū)

        關(guān)閉
        主站蜘蛛池模板: 新沂市| 敦煌市| 阜平县| 清苑县| 永福县| 株洲县| 那曲县| 镇江市| 商河县| 东源县| 冕宁县| 册亨县| 合作市| 阿勒泰市| 弋阳县| 合阳县| 贵南县| 宣汉县| 枣阳市| 全南县| 霍邱县| 无极县| 西和县| 汝南县| 保靖县| 满洲里市| 英超| 察雅县| 扬州市| 喀什市| 电白县| 隆化县| 宁陵县| 台中县| 靖江市| 桓台县| 天门市| 信宜市| 汶川县| 射洪县| 雷山县|