單片機代碼寫入的三種常用語句
代 碼
本文引用地址:http://www.104case.com/article/201706/361034.htm// 任務結構
typedef struct _TASK_COMPONENTS
{
uint8 Run; // 程序運行標記:0-不運行,1運行
uint8 Timer; // 計時器
uint8 ItvTime; // 任務運行間隔時間
void (*TaskHook)(void); // 要運行的任務函數
} TASK_COMPONENTS; // 任務定義
這個結構體的設計非常重要,一個用4個參數,注釋說的非常詳細,這里不在描述。
2. 任務運行標志出來,此函數就相當于中斷服務函數,需要在定時器的中斷服務函數中調用此函數,這里獨立出來,并于移植和理解。
代 碼
/**************************************************************************************
* FunctionName : TaskRemarks()
* Description : 任務標志處理
* EntryParameter : None
* ReturnValue : None
**************************************************************************************/
void TaskRemarks(void)
{
uint8 i;
for (i=0; i《TASKS_MAX; i++) // 逐個任務時間處理
{
if (TaskComps[i].Timer) // 時間不為0
{
TaskComps[i].Timer--; // 減去一個節拍
if (TaskComps[i].Timer == 0) // 時間減完了
{
TaskComps[i].Timer = TaskComps[i].ItvTime; // 恢復計時器值,從新下一次
TaskComps[i].Run = 1; // 任務可以運行
}
}
}
}
大家認真對比一下次函數,和上面定時復用的函數是不是一樣的呢?
3. 任務處理:
代 碼
/**************************************************************************************
* FunctionName : TaskProcess()
* Description : 任務處理
* EntryParameter : None
* ReturnValue : None
**************************************************************************************/
void TaskProcess(void)
{
uint8 i;
for (i=0; i《TASKS_MAX; i++) // 逐個任務時間處理
{
if (TaskComps[i].Run) // 時間不為0
{
TaskComps[i].TaskHook(); // 運行任務
TaskComps[i].Run = 0; // 標志清0
}
}
}
此函數就是判斷什么時候該執行那一個任務了,實現任務的管理操作,應用者只需要在main()函數中調用此函數就可以了,并不需要去分別調用和處理任務函數。
到此,一個時間片輪詢應用程序的架構就建好了,大家看看是不是非常簡單呢?此架構只需要兩個函數,一個結構體,為了應用方面 下面將再建立一個枚舉型變量。
下面就說說怎樣應用吧,假設我們有三個任務:時鐘顯示,按鍵掃描,和工作狀態顯示。
1. 定義一個上面定義的那種結構體變量:
代 碼
/**************************************************************************************
* Variable definition
**************************************************************************************/
static TASK_COMPONENTS TaskComps[] =
{
{0, 60, 60, TaskDisplayClock}, // 顯示時鐘
{0, 20, 20, TaskKeySan}, // 按鍵掃描
{0, 30, 30, TaskDispStatus}, // 顯示工作狀態
// 這里添加你的任務。。。。
};
在定義變量時,我們已經初始化了值,這些值的初始化,非常重要,跟具體的執行時間優先級等都有關系,這個需要自己掌握。
①大概意思是,我們有三個任務,沒1s執行以下時鐘顯示,因為我們的時鐘最小單位是1s,所以在秒變化后才顯示一次就夠了。
②由于按鍵在按下時會參數抖動,而我們知道一般按鍵的抖動大概是20ms,那么我們在順序執行的函數中一般是延伸20ms,而這里 我們每20ms掃描一次,是非常不錯的出來,即達到了消抖的目的,也不會漏掉按鍵輸入。
③為了能夠顯示按鍵后的其他提示和工作界面,我們這里設計每30ms顯示一次,如果你覺得反應慢了,你可以讓這些值小一點。后面的名稱是對應的函數名,你必須在應用程序中編寫這函數名稱和這三個一樣的任務。
2. 任務列表:
代 碼
// 任務清單
typedef enum _TASK_LIST
{
TAST_DISP_CLOCK, // 顯示時鐘
TAST_KEY_SAN, // 按鍵掃描
TASK_DISP_WS, // 工作狀態顯示
// 這里添加你的任務。。。。
TASKS_MAX // 總的可供分配的定時任務數目
} TASK_LIST;
好好看看,我們這里定義這個任務清單的目的其實就是參數TASKS_MAX的值,其他值是沒有具體的意義的,只是為了清晰的表面任務的關系而已。
3. 編寫任務函數:
代 碼
/**************************************************************************************
* FunctionName : TaskDisplayClock()
* Description : 顯示任務
* EntryParameter : None
* ReturnValue : None
**************************************************************************************/
void TaskDisplayClock(void)
{
}
/**************************************************************************************
* FunctionName : TaskKeySan()
* Description : 掃描任務
* EntryParameter : None
* ReturnValue : None
**************************************************************************************/
void TaskKeySan(void)
{
}
/**************************************************************************************
* FunctionName : TaskDispStatus()
* Description : 工作狀態顯示
* EntryParameter : None
* ReturnValue : None
**************************************************************************************/
void TaskDispStatus(void)
{
}
// 這里添加其他任務。。。。。。。。。
現在你就可以根據自己的需要編寫任務了。
4. 主函數:
代 碼
/**************************************************************************************
* FunctionName : main()
* Description : 主函數
* EntryParameter : None
* ReturnValue : None
**************************************************************************************/
int main(void)
{
InitSys(); // 初始化
while (1)
{
TaskProcess(); // 任務處理
}
}
到此我們的時間片輪詢這個應用程序的架構就完成了,你只需要在我們提示的地方添加你自己的任務函數就可以了。是不是很簡單啊,有沒有點操作系統的感覺在里面?
不防試試把,看看任務之間是不是相互并不干擾?并行運行呢?當然重要的是,還需要,注意任務之間進行數據傳遞時,需要采用全局變量,除此之外還需要注意劃分任務以及任務的執行時間,在編寫任務時,盡量讓任務盡快執行完成。。。。。。。。
三、操作系統
操作系統的本身是一個比較復雜的東西,任務的管理,執行本事并不需要我們去了解。但是光是移植都是一件非常困難的是,雖然有人說過“你如果使用過系統,將不會在去使用前后臺程序”。但是真正能使用操作系統的人并不多,不僅是因為系統的使用本身很復雜,而且還需要購買許可證(ucos也不例外,如果商用的話)。
這里本人并不想過多的介紹操作系統本身,因為不是一兩句話能過說明白的,下面列出UCOS下編寫應該程序的模型。大家可以對比一下,這三種方式下的各自的優缺點。
代 碼
/**************************************************************************************
* FunctionName : main()
* Description : 主函數
* EntryParameter : None
* ReturnValue : None
**************************************************************************************/
int main(void)
{
OSInit(); // 初始化uCOS-II
OSTaskCreate((void (*) (void *)) TaskStart, // 任務指針
(void *) 0, // 參數
(OS_STK *) &TaskStartStk[TASK_START_STK_SIZE - 1], // 堆棧指針
(INT8U ) TASK_START_PRIO); // 任務優先級
OSStart(); // 啟動多任務環境
return (0);
}
代 碼
/**************************************************************************************
* FunctionName : TaskStart()
* Description : 任務創建,只創建任務,不完成其他工作
* EntryParameter : None
* ReturnValue : None
**************************************************************************************/
void TaskStart(void* p_arg)
{
OS_CPU_SysTickInit(); // Initialize the SysTick.
#if (OS_TASK_STAT_EN 》 0)
OSStatInit(); // 這東西可以測量CPU使用量
#endif
OSTaskCreate((void (*) (void *)) TaskLed, // 任務1
(void *) 0, // 不帶參數
(OS_STK *) &TaskLedStk[TASK_LED_STK_SIZE - 1], // 堆棧指針
(INT8U ) TASK_LED_PRIO); // 優先級
// Here the task of creating your
while (1)
{
OSTimeDlyHMSM(0, 0, 0, 100);
}
}
不難看出,時間片輪詢法優勢還是比較大的,即由順序執行法的優點,也有操作系統的優點。結構清晰,簡單,非常容易理解。
評論