新聞中心

        EEPW首頁 > 手機與無線通信 > 設計應用 > 高增益高線性度CMOS偶次諧波混頻器設計

        高增益高線性度CMOS偶次諧波混頻器設計

        作者: 時間:2011-01-20 來源:網絡 收藏

        1. 4 其他設計考慮

        根據參考文獻 , 我們在電路設計過程中做了以下考慮。從轉換增益考慮, △VLO必須較小, 而 βRFN和 βRFP必須較大。當 βRFN和βRFP大到一定程度時, MRFN 和MR FP 將進入弱反型區, 當MRFN和MRFP都處于弱反型區時, 轉換增益將會急速增加, 但是同時, 線性度將急劇惡化。幸運的是, 我們可以通過增加LO 的功率來同時提高轉換增益和線性度。

        這與吉爾伯特混頻器有所不同, 對于吉爾伯特結構來說, 增加LO功率只能使轉換增益增加, 但是線性度會惡化。所以在設計過程中, 必須考慮使用適當的LO 功率和△VLO, 電流復用對晶體管的尺寸和偏置要折中。我們可以設置偏置, 使△VLO處于弱反型區來得到低功耗, 同時從電流復用對上補償線性度,并通過設置合適的LO功率得到適當的轉換增益。

        2 電路仿真

        本文混頻器電路設計基于SM IC0. 18 m 標準CMOS工藝庫, 運用ADS進行了仿真。混頻器工作在1. 8 V 電源電壓下, 輸入頻率1. 575 GH z, 功率為- 30 dBm; 本振頻率789. 5 MH z, 功率為- 5 dBm。

        圖4給出了轉換增益和三階交調截至點( IIP3)隨本振功率和功率變化曲線。圖4( a)顯示了固定為- 30 dBm, 本振信號功率為- 5 dBm時轉換增益達最大為20. 848 dB; 本振信號功率從- 8 dBm到- 5 dBm, IIP3緩慢增加到- 3 dBm, 然后開始下降。圖4 ( b) 顯示了固定本振信號功率為- 5 dBm, 轉換增益在射頻輸入信號大于- 20 dBm 時開始下降, IIP3在- 11 dBm 到- 2. 297 dBm 波動。仿真結果顯示, 該混頻器具有高增益、高線性度的優點。

        增益和IIP3隨本振功率和射頻功率變化的曲線
        增益和IIP3隨本振功率和射頻功率變化的曲線
        圖4 增益和IIP3隨本振功率和射頻功率變化的曲線


        關鍵詞: 射頻 信號 耦合

        評論


        相關推薦

        技術專區

        關閉
        主站蜘蛛池模板: 大余县| 龙江县| 社旗县| 湟中县| 军事| 加查县| 大同市| 新民市| 竹山县| 綦江县| 梨树县| 安吉县| 通河县| 丰县| 包头市| 望都县| 乌拉特前旗| 三台县| 阳西县| 华安县| 方正县| 兴海县| 石阡县| 抚州市| 井陉县| 墨竹工卡县| 巫山县| 江永县| 库伦旗| 陆良县| 苍南县| 达孜县| 青冈县| 皋兰县| 铁力市| 南丰县| 随州市| 天等县| 安岳县| 伽师县| 武川县|