高增益高線性度CMOS偶次諧波混頻器設計
1. 2 電流復用電路分析
射頻輸入端使用的電流復用結構如圖2 中MRFP1和MRFN 1以及MRFP2和MRFN2所示, 兩路結構完全對稱, 該結構的跨導為gm = gm p + gmn, 其中gmp為晶體管MRFP1和MRFP2跨導, gm n為晶體管MRFN 1和MRFN 2的跨導。因此, 采用電流復用結構增大了跨導級的跨導, 從而實現了混頻器的高增益性能。
根據溝道長度效應, 跨導管電流表達式為:

這里, n 是跨導參數, vin是輸入信號, !V = VG S - Vt是過驅動電壓, n 是溝道長度調制系數, Vt 是閾值電壓。根據( 1)式可得輸出電流:

從( 2)式也可看出, 組成電流復用結構的跨導是兩個晶體管的跨導的總和。
當輸入信號為正時,MRFN工作于飽和區, MRFP工作于截止區并等效成電阻RRFP, 此時, 整個電流復用結構等效成一個n溝道的共源放大器, 同理, 當輸入信號為負時, 該結構等效成一個p 溝道的共源放大器, 該電流復用結構組成了推挽電路并增大了電路的動態范圍, 提高了電路的線性度。
1. 3 倍頻電路
為了進一步分析本振信號倍頻原理, 將本文設計混頻器(圖2)中的帶電感倍頻電路單獨給出, 如圖3所示。根據式( 1) , 晶體管MLON1和MLON2的漏電流ILON+ 和ILON- 可表示為:

這里, vLO是LO 正弦輸入信號, 且

aLO是該信號的幅度, △VLON = VLO - VTN是MLON 1和MLON 2的過驅動電壓。根據式( 3), 流經電流復用電路和倍頻電路的總電流ICR為ILON+ 、ILON- 的和, 即得:

其中:

該信號即為LO 的2次諧波信號。
從式( 4)可看出, 在節點VCOM 處產生了LO 倍頻信號i2LO, 同時基頻信號被抵消。假設電感的阻抗為ZLE = RLE + j2ωLOLE, 混頻點處的電壓Va 可表示為:

其中, LE 和RLE分別是電感的值和寄生負載, 根據式( 5), 由于該電感的存在, 混頻處的電壓幅度Va 大于VCOM , 這提高了進入混頻器的LO 二次諧波信號的功率, 也就是說提高了有用信號的功率, 所以有助于提高該拓撲結構的線性度, 同時也有利于減小噪聲系數。
倍頻電路

圖3 倍頻電路
評論