戶用逆變電源系統的研究與設計
作者:合肥工業大學能源研究所 鄭詩程,蘇建徽,余世杰,沈玉
摘要:分析、設計了一種以Intel80C196MC微處理器為控制核心的風能、光能互補應用的戶用逆變電源系統。系統利用太陽能和風能對蓄電池充電,逆變器采用電流和電壓雙閉環調節方式,提高了系統的動態響應速度,有效抑制了系統的超調,實現穩態輸出無靜差。
關鍵詞:戶用電源系統;微控制器;雙閉環調節方式
1 引言
我國西北地區國土面積遼闊,太陽能和風能資源非常豐富,其中太陽能年均輻射強度為6000~8400MJ/m2,年均太陽能光照時間為3000~3200h;風力平均為5~6級。西北邊遠地區經濟不發達,且住戶非常分散,若為這些用戶提供市電,則成本太高,因而,如何合理利用現有的資源——太陽能和風能就成為解決這些問題的有效途徑。
2 風、光互補型戶用電源系統
系統的結構框圖如圖1所示。
本系統既可以利用太陽能和風能對蓄電池充電,將自然能轉化為化學能儲藏在蓄電池中,然后再將化學能逆變成220V交流電供給用戶使用;又可以直接將太陽能和風能逆變為220V交流電供給用戶使用。
3 系統的硬件電路
本系統的硬件電路主要包括主電路、隔離與驅動電路和控制電路等。
3.1 主電路
主電路的拓撲結構如圖2所示。由圖2可知主電路主要包括蓄電池的過充保護電路和逆變電路。圖中uFP表示經過整流后的風機輸出電壓,uSP表示太陽電池輸出電壓,K為電磁繼電器,GB為額定電壓24V的蓄電池組。
3.1.1 過充保護電路的工作原理
當蓄電池的電壓過高時,A點電壓就會大于TL431的基準電壓值Uref(=2.5V)從而使TL431導通,B點被鉗為低電平,V1截止,C點為高電平,V3導通,V2截止,D點為高電平,此時VT14和VT15均導通,繼電器K動作。根據太陽能電池和風機的特性,太陽能電池的輸出電壓被直接短路,風機的輸出電壓通過大功率卸載電阻R9卸放掉;相反,當蓄電池的電壓過低時,VT14和VT15均截止,太陽能電池和風機的輸出電壓就對蓄電池充電。
3.1.2 逆變電路
采用單相全橋逆變電路,用功率MOSFET作為逆變電路的開關器件。功率MOSFET是一種多子導電的單極性電壓控制型器件,具有開關動作快、輸入阻抗大、驅動功率小、無二次擊穿、驅動電路簡單、安全工作區大等優點,特別是由于具有正溫度系數,可以自動均衡電流,所以在輸入電壓低、工作電流大的逆變電源系統中可以將幾只功率MOSFET并聯以提高電流容量。在本系統中,將三只功率MOSFET并聯,使電流容量增大到三倍。逆變器將整流后的直流電壓轉換成特定頻率的SPWM波,再經過電感和電容濾波將其轉換為220V的標準正弦波電壓,其中電感用變壓器次級的漏感代替,采用這種方式使系統結構簡單,噪音低,并且能有效地抑制波形中的高次諧波成分。
SPWM控制方式預先將0~360
評論