DSP并行處理在剖面聲納系統中的應用
多波束剖面聲納系統采用35k~65kHz寬帶線形調頻信號進行探測,系統的采樣頻率為500kHz,接收9路的基陣信號,并且要求系統具有較高的探測能力,所以采集時間定為15ms以上,探測有效距離大于11米。進行海底的剖面探測時,需要對接收的多波束接收信號進行帶內補償、波束形成、頻域相關算法、旁瓣抑制以及FIR濾波等處理,系統要求能夠在10幀/秒以上實時顯示剖面結果并且存盤。
為了滿足多波束剖面聲納的高速、大容量數據的實時信號處理需求,在信號處理系統部分采用了以二片DSP TMS320DM642組成的流水線并行結構,如圖2所示。
TMS320DM642是TI公司2004年推出的多媒體處理器,具有最高720MHz的主頻,單片峰值處理能力為5 760MIPS,而且該芯片具有10M/100M以太網接口,可以方便地實現處理板間的網絡數據互連,從而可以實現系統的并行數據處理。
圖2中,左端DSP為從DSP,通過其自身網口與接收換能器內的數據轉換網絡連接,根據顯示速度要求,接收轉換后的信號數據,并存儲到其外圍的SDRAM中。當接收到一幀信號數據時轉入并行處理程序,左右兩片DSP采用流水線并行處理方式。
并行處理時左端DSP負責接收數據,右端主DSP通過HPI接口讀取左端DSP的內部數據及外部SDRAM的數據,同時左右兩端的DSP通過雙端口FIFO進行數據交換、郵箱信息傳遞等。為了保證信號處理時左右兩端DSP的負載平衡,系統將剖面聲納系統需要處理的任務進行劃分:多波束剖面聲納信號處理需要將9路波束數據(每路7 500點16bit)進行FFT、頻域波束形成、頻域相關算法、IFFT、時域FIR濾波、時域加權壓制旁瓣等算法處理。如果TI DSP所采用的指令,其“取指”、“分析”、“執行”三大操作步驟采用流水線工作流程,則可以利用多個任務在時間上相互錯開,輪流重疊地使用同一套設備上的不同運算單元,來加快系統的計算速度,流水線的并行執行大大降低了整個系統任務的執行時間。為了保證兩個DSP的負載平衡,使系統工作時流水線并行處理板能夠真正地以流水線的形式并行處理剖面的數據,將每塊并行處理板內任務進行了劃分。系統單個DSP負載的劃分如圖3所示。
相關推薦
-
-
-
-
-
icecool | 2004-11-03
-
-
-
fancy_wind | 2004-10-29
-
hpnet | 2003-08-24
-
-
電子陽光 | 2004-11-04
-
wuren_13 | 2004-11-08
-
評論