打通linux的tty驅動的數據鏈路
一、首先把tty驅動在linux中的分層結構理清楚:
本文引用地址:http://www.104case.com/article/201610/305940.htm
自上而下分為TTY核心層、TTY線路規程、TTY驅動。
二、TTY核心層與線路規程層分析
用戶空間的程序直接對tty核心層進行讀寫等相關操作,在tty_io.c中:
int__init tty_init(void)
{
cdev_init(tty_cdev,tty_fops);
if(cdev_add(tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, /dev/tty) 0)
panic(Couldn'tregister /dev/tty drivern);
device_create(tty_class,NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, tty);
………
}
以上的一段初始化代碼可以獲取以下信息:
注冊了一個字符驅動,用戶空間操作對應到tty_fops結構體里的函數:
staticconst struct file_operations tty_fops = {
。llseek =no_llseek,
。read =tty_read,
。write =tty_write,
。poll =tty_poll,
。unlocked_ioctl =tty_ioctl,
。compat_ioctl =tty_compat_ioctl,
。open =tty_open,
。release =tty_release,
。fasync =tty_fasync,
};
對于字符設備驅動,我們知道,讀寫操作一一對應于fops.
tty_open:
static int tty_open(struct inode *inode, struct file *filp)
{
int index;
dev_tdevice = inode->i_rdev;
structtty_driver *driver;
……
driver= get_tty_driver(device, index);
……
tty= tty_init_dev(driver, index, 0);
……
retval= tty_add_file(tty, filp);
……
if(tty->ops->open)
retval= tty->ops->open(tty, filp);
}
get_tty_driver是根據設備號device,通過查找tty_drivers全局鏈表來查找tty_driver.
tty_init_dev是初始化一個tty結構體:
tty->driver= driver;
tty->ops= driver->ops;
并建立線路規程:
ldops= tty_ldiscs[N_TTY];
ld->ops= ldops;
tty->ldisc= ld;
其實tty_ldiscs[N_TTY]在console_init中確定,該函數在內核啟動的時候調用。
tty_register_ldisc(N_TTY,tty_ldisc_N_TTY);
則:tty_ldiscs[N_TTY]=tty_ldisc_N_TTY;
struct tty_ldisc_ops tty_ldisc_N_TTY = {
。magic = TTY_LDISC_MAGIC,
。name = n_tty,
。open = n_tty_open,
。close = n_tty_close,
。flush_buffer = n_tty_flush_buffer,
。chars_in_buffer= n_tty_chars_in_buffer,
。read = n_tty_read,
。write = n_tty_write,
。ioctl = n_tty_ioctl,
。set_termios = n_tty_set_termios,
。poll = n_tty_poll,
。receive_buf = n_tty_receive_buf,
。write_wakeup = n_tty_write_wakeup
};
tty_add_file主要是將tty保存到file的私有變量private_data中。
tty->ops->open的調用,實則上就是應用driver->ops->open.這樣,我們就從tty核心層到tty驅動層了。
tty_write:
static ssize_t tty_write(struct file *file, const char __user *buf,
size_t count, loff_t *ppos)
{
………
ld= tty_ldisc_ref_wait(tty);
if(!ld->ops->write)
ret= -EIO;
else
ret= do_tty_write(ld->ops->write, tty, file, buf, count);
………
}
從以上這個函數里,可以看到tty_write調用路線規程的write函數,所以,我們來看ldisc中的write函數是怎樣的。經過一些操作后,最終調用:
tty->ops->flush_chars(tty);
tty->ops->write(tty,b, nr);
顯然,這兩個函數,都調用了tty_driver操作函數,因為在之前的tty_open函數中有了tty->ops=driver-> ops這樣的操作。那么這個tty_driver是怎樣的呢,在TTY系統中,tty_driver是需要在驅動層注冊的。注冊的時候就初始化了ops, 也就是說,接下來的事情要看tty_driver的了。
tty_read:
static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
loff_t *ppos)
{
………
ld= tty_ldisc_ref_wait(tty);
if(ld->ops->read)
i= (ld->ops->read)(tty, file, buf, count);
else
i= -EIO;
……
}
像tty_write的一樣,在tty_read里,也調用了線路規程的對應read函數。不同的是,這個read沒有調用tty_driver里ops的read,而是這樣:
uncopied= copy_from_read_buf(tty, b, nr);
uncopied+= copy_from_read_buf(tty, b, nr);
從函數名來看copy_from_read_buf,就是從read_buf這個緩沖區拷貝數據。實際上是在tty->read_buf的末尾 tty->read_tail中讀取數據。那么read_buf中的數據是怎么來的呢?猜想,那肯定是tty_driver干的事了。
tty_ioctl:
long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
……
switch(cmd) {
case… …… :
評論