新聞中心

        EEPW首頁 > 光電顯示 > 設計應用 > LED路燈防浪涌干擾設計中亟待解決的絕緣耐壓問題

        LED路燈防浪涌干擾設計中亟待解決的絕緣耐壓問題

        作者: 時間:2010-03-24 來源:網絡 收藏

         或防瞬變干擾常用的器件有氣體放電管、金屬氧化物壓敏電阻、硅瞬變電壓吸收二極管和固體放電管幾種,以及它們的組合。 防雷電干擾電路及其裝置一般與 控制裝置成為一體,常用的有氣體放電管和壓敏電阻的組合。

        本文引用地址:http://www.104case.com/article/200710.htm

          一、氣體放電管和壓敏電阻組合構成的抑制電路原理

          由于壓敏電阻(VDR)具有較大的寄生電容,用在交流電源系統,會產生可觀的泄漏電流,性能較差的壓敏電阻使用一段時間后,因泄漏電流變大可能會發熱自爆。為解決這一問題在壓敏電阻之間串入氣體放電管。圖1 中,將壓敏電阻與氣體放電管串聯,由于氣體放電管寄生電容很小,可使串聯支路的總電容減至幾個pF。在這個支路中,氣體放電管將起一個開關作用,沒有暫態電壓時,它能將壓敏電阻與系統隔開,使壓敏電阻幾乎無泄漏電流。但這又帶來了缺點就是反應時間為各器件的反應時間之和。例如壓敏電阻的反應時間為25ns,氣體放電管的反應時間為100ns,則圖2 的R2、G、R3 的反應時間為150ns,為改善反應時間加入R1 壓敏電阻,這樣可使反應時間為25ns。


          金屬氧化物壓敏電阻(MOV)的電壓-電流特性見圖3,金屬氧化物壓敏電阻(MOV)特性參數見表1。氣體放電管(GDT)的電壓-電流特性見圖4,氣體放電管(GDT)特性參數見表2。

          由于浪涌干擾所致,一旦加在氣體放電管兩端的電壓超過火花放電電壓(圖4 的u1)時,放電管內部氣體被電離,放電管開始放電。放電管端的壓降迅速下降至輝光放電電壓(圖4 的u2)(u2 在表2 中的數值為140V 或180V,與管子本身的特性有關),管內電流開始升高。隨著放電電流的進一步增大,放電管便進入弧光放電狀態。在這種狀態下,管子兩端電壓(弧光電壓)跌得很低(圖4的u3)(u3 在表2 中數值為15V 或20V,與管子本身的特性有關),且弧光電壓在相當寬的電流變動范圍(從圖4 的i1→i2 過程中)內保持穩定。因此,外界的高電壓浪涌干擾,由于氣體放電管的放電作用,被化解成了低電壓和大電流的受保護情況(u3 和i2),且這個電流(從圖4 的i2→i3)經由氣體放電管本身流回到干擾源里,免除了干擾對燈具可能帶來的危害。隨著浪涌過電壓的消退,流過氣體放電管的電流降到維持弧光放電狀態所需的最小值以下(約為10mA~100mA,與管子本身的特性關),弧光放電便停止,并再次通過輝光放電狀態后,結束整個放電狀態(熄弧)。


          二、具有干擾功能的 普遍存在的絕緣耐壓問題

          1、燈具耐壓問題存在的現狀

          在采用上述氣體放電管和壓敏電阻組合構成的抑制電路干擾的LED普遍存在的絕緣耐壓問題是在燈具的帶電部件與金屬部件之間不能承受2U+1000(V)的基本絕緣的電壓,常見在600V 左右發生擊穿現象。造成絕緣耐壓問題的根源是氣體放電管的耐壓參數選擇不合理所致。與其說是LED 路燈存在的絕緣耐壓問題,倒不如說是LED 控制裝置存在的絕緣耐壓問題。因為防浪涌干擾電路通常位于LED 控制裝置中。帶有防浪涌干擾功能的LED 控制裝置應符合GB 19510.14-2009《燈的控制裝置第 14 部分:LED 模塊用直流或交流電子控制裝置的特殊要求》和GB19510.1-2000《燈的控制裝置第 1 部分:一般要求和安全要求》。


        上一頁 1 2 3 4 下一頁

        評論


        相關推薦

        技術專區

        關閉
        主站蜘蛛池模板: 延长县| 开平市| 九龙县| 华安县| 侯马市| 理塘县| 报价| 余姚市| 兖州市| 定结县| 神池县| 河北省| 报价| 加查县| 岳池县| 郸城县| 双牌县| 林州市| 兴城市| 尖扎县| 饶平县| 横峰县| 蓬莱市| 化德县| 德钦县| 锡林郭勒盟| 林甸县| 安顺市| 北安市| 宜州市| 伊春市| 鹤山市| 林西县| 宝应县| 凤山县| 皋兰县| 舟曲县| 彭阳县| 和田县| 罗城| 中西区|