用電附件過載引發汽車電源設計新思考
表中的兩類(引擎管理、多媒體和HVAC)汽車電子系統需要汽車電力系統提供102A的電流。這一點很重要,為了描述附件超載的電流狀態,要注意:為了在不增加電池的條件下支持102A的負載,交流發電機必須具備大約兩倍的額定電流―204A。原因在于:當引擎低速運行且怠速時,汽車交流發電機僅僅可以產生一半的電能。這就需要大型的交流發電機,在標稱系統電壓為14.2V的PowerNet上,它必須提供2,840W的功率。
如果以不同的占空周期把其余的四個子系統的用電負載包含在汽車的負載調查表中,就有可能輕易地超過交流發電機的供電能力。當這種情況出現于現在的汽車上時,PowerNet的電壓就會下降,直到系統電壓與電池內部12.8V的電壓匹配,此時,蓄電池開始為總的用電負載提供一部分電能。這種效應被稱為電池分配(battery contribution)。
電池分配是一種周期性的事件,它隨機地為不定期工作的用電負載供電,如乘員室的自動溫度控制、旋轉方向盤的事件;或為消費者所選擇的確定性負載供電,如音響或導航助手。這些周期性事件就是電池耗盡的原因,并最終導致需要更換電池。
關于該表要注意的最后一點是:如果考慮車身電子、照明和底盤電子等子系統的間歇性負載,對汽車充電系統的需求就真的是附件超載(accessory overload)。將來的系統將持續這種趨勢。
汽車制造商因此正采取步驟降低因電子系統泛濫所造成的電氣系統超載問題。這些措施包括:提高現有用電附件的效率;功能集成以消除重復的控制電子系統,從而降低控制系統的耗電;縮小機械傳動裝置,例如,對ABS創新使之能夠以更小、更低的功耗提供預期的功能。(改寫)
電力需求無窮無盡
實際情況依然是:在不遠的將來,附件超載將繼續猛烈如初,因為消費者需要越來越多的新特色和功能。從下圖可見4代汽車電子系統的演變進程。
從1968年到上世紀70年代,第一代汽車電子系統包括電動助力窗、電動門鎖、空調、電子燃油注入和電子點火,這些系統對于滿足那個時代的排放規則的要求是必需的,并演變到采用電動助力轉向。
從上世紀80年代到90年代早期,第二代汽車電子系統包括ABS、防盜系統和更為先進的電子引擎控制系統,以滿足限制尾氣排放的法規的要求。第二代汽車電子系統因采用軟件控制功能和專用電子控制單元而成為可能,如早期的引擎控制單元(ECU)通過基于傳感器的閉環控制及取代了老式機械系統的電子機械傳動裝置來管理燃油、火花塞放電和廢氣的再循環。
第三代汽車電子功能因引入更為強大的微處理器而成為可能,例如以80186取代8080,并能夠處理更多的控制功能。這就引出了更為先進的功能,如多工通信和分布式計算功能、巡航控制、導航功 能以及自動化程度更高的空調系統,并改善了變速箱,實現了人力操縱傳動的自動化,采用了更為先進的氣囊。在第三代汽車電子時代,車載娛樂系統采用了數字信號處理器(DSP),提高了分布式電子系統架構的性能,擴展了諸如控制器局域網(CAN)之類多工通信的應用。
利用更高級別的分布式汽車電子系統,就有可能從儀表盤面板中騰出新的空間,因為只有控制信息是需要讀取的。上世紀90年代的音響系統就是這種趨勢的一個例證,其中,收音機機芯和音響放大器級都安裝到汽車車身的后窗臺區域之中,儀表盤面板上僅僅留下顯示器和開關。車內氣候電子控制、導航系統、CD換碟器等等之類的系統也出現了類似的趨勢。
在第四代汽車電子系統階段,微處理器和數字信號處理器在汽車中的應用更為普及。這些21世紀的系統中,每輛車的汽車電子系統采用了40到80個以上的微處理器和35到100個以上的電機。新的系統由軟件控制,并廣泛地依賴于廉價和魯棒的存儲器硬件的可用性。
將來汽車中電子系統的數量可能不會像二代時增長那么快,但是,軟件系統將呈指數增長。例如,目前正呈現的一個趨勢就是通過免疫系統工程把在線診斷(OBD)升級為下一代的OBD1。之所以出現這種趨勢是因為:目前的系統復雜性如此之高,以至于接近2/3的故障模式根本無法解讀,并且將繼續惡化。
要診斷未來的汽車電子系統,將需要擴充在線計算軟件以執行診斷,因為將來的系統所包含的電氣化高安全性子系統比現有的系統要多一個數量級以上,這些高安全性子系統包含在此已討論過的電氣化子系統及更多的子系統。目前,電子節氣門控制(ETC)和電子助力轉向系統(EPS)已經被延伸到電子穩定程序(ESP)系統,以管理汽車縱向運動控制到電子受控剎車(ECB)系統等等功能。這些子系統成為表中所列的第6類。
評論