車載筆記本電源適配器的設計
令電源開關S 占空比為D1 ,二極管D 占空比為D2 。由于在任何時刻只有一個開關導通,則:
輸入電壓記為UIN,輸出電壓記為UOUT。若S 導通,輸入電源電壓將被電感吸收,在S 上不會產生壓降。如果D 導通時間足夠長,電感L 可看作短路,也不會有壓降。忽略二極管正向導通壓降,UIN和UOUT的關系推導如下:
由于D1 1 ,因此,輸出電壓大于輸入電壓。另外,兩個開關還能調節輸出電壓。若輸出電壓高于19 V,則必須迫使輸出電壓下降。S 導通,D 截止使得電容和負載脫離電路的其它部分。此時,電容充當負載的電源。放電使得電容兩端的電壓降低,即降低了輸出電壓。若輸出電壓低于19 V,那么必須提高輸出電壓。使S 截止,D 導通,電流流經二極管D、電容C和負載RL形成回路。由于電流向電容充電,使得電容兩端的電壓增加,使輸出電壓也增加。
2 PWM 控制
升壓轉換器中的電源開關S,用一個工作在開關狀態的功率MOSFET 管實現,見圖2 。在柵極加上一系列脈沖后,功率管將不斷地處于通斷交替的狀態,改變通斷的時間比率,就可以調節輸出電壓的大小。假設一個周期為t ,t =tON時,脈寬調制脈沖的正脈沖被送到功率管的柵極,K導通;當t =tOFF時,送到K管上的調制脈沖變成零伏或負偏壓,S 處于截止狀態。
上式表明了輸出電壓UOUT和功率管開關時間之間的關系。由于tOFF時間較短,采用低功耗的二極管和電容,使其不超過安全工作區,否則,可能會導致器件過熱而損壞。該升壓轉換器的電流和電壓波形如圖3 所示。
圖3 占空比50 %時電壓和電流波形
波形(3)顯示電感線圈的紋波電流,增大線圈的尺寸能降低紋波,但同時也增加了器件的物理尺寸。線圈不能太小,否則無法在MOSFET 截止時提供足夠的能量,使輸出電壓的調節能力變差。本設計用到的線圈為56 μH。
所有的控制功能由Unitrode 公司生產PWM 芯片UC3843 來完成,它具有反饋電壓比較、誤差放大、脈寬調制、過流保護、欠壓保護等功能[4]。該芯片為功率管產生脈寬調制信號,通過檢測輸出的電壓和電流信號來控制開關管的通斷和調整輸出電壓。輸入和輸出電壓在一系列低功耗的電容作用下變得平滑。主要電路如圖4 所示。輸入端并聯的四個大容量電解電容(C1 ~C4 )起到電源濾波的作用,C5用來濾除電路工作時產生的高頻諧波成分。線圈L1是由幾個不同長度漆包線并聯,以減少表面對高速轉換的影響。大功率開關元件K1采用IR 公司的IRL2505 ,該器件的源極/漏極電阻在工作時只有8 mΩ,故功耗非常低。肖特基二極管D1采用TO220 的封裝,最大工作電壓為45 V,正向導通壓降為0。63 V 時的電流為16 A。低ESR 的電解電容C6 ~C9用于平滑輸出電壓,減小紋波電壓。電容C10用于高頻去耦。輸出電壓由R1 、R2 、R3和P1分壓,送入IC1的電壓反饋輸入端。IC 的時鐘頻率由RC 網絡R8和C13決定,工作頻率約為42kHz 。由R12 、C15和C16構成的電源去耦電路以確保IC1工作的可靠性。
評論