測試3G手機的DigRF技術
DigRF 3G支持數字傳輸下的三種時序模式,具體取決于被傳輸RF信息的類型(表1)。DigRF標準還支持三種公共的輸入基準時鐘頻率(19.0 MHz、26.0 MHz和38.4 MHz);時鐘通過SysClk信號送至基帶。與速度模式無關,DigRF處理器會用一個本地的FIFO緩沖管理數據流,當傳輸幀時會產生一個無法預測的時序。
生產測試的挑戰
對采用DigRF協議器件作成功測試的關鍵是要找到一種方式,能在RF接收測試期間管控RxData包的不確定性狀態。在對DigRF產品作RF接收測試期間,能觀察到RxData信號合成狀態的多級不確定性:
相位時序;
幀時序;
幀類型;
有效載荷中的數據。
312 Mbps的數據速率來自于一個1248 MHz主時鐘(一般由PLL生成)的1/4分頻器。在生產性測試系統中,考慮到影響RF前端的相位噪聲性能的重要性,器件的時鐘輸入應由RF儀器提供。與普通數字子系統相比較,這個時鐘源的起始相位通常是不可控的。DUT(待測設備)的輸入時鐘相位未定,PLL倍頻器/分頻器產生的相位也不確定,兩者結合導致RxData輸出時序無法預測,包括器件各上電循環之間,以及多地點并行測試配置中的不同器件之間的輸出時序。
一種生產型測試儀應有這種能力,即在各次測試間對測試儀硬件和DUT作必要修改時,仍保持數字子系統的運行。它使測試儀能夠維持相對于DUT輸出的選通時序,避免在正式運行中的選通相位重調,節省了測試時間。
下一個重要的測試挑戰是尋找一個能處理多級不確定性數據包傳輸性能的方式。如圖3所示,在DUT的每個RF接收測試期間,測試儀都不知道每個包會在哪個測試循環中傳輸,包的類型會是什么,或者包的類型是否符合預期(例如,RFIC會生成一個主動的控制狀態消息)。
圖 3. 由于數據包的不確定性,在一款器件的每次RF接收測試期間,測試儀不知道每個包會在哪個測試循環中傳輸,包的類型是什么,或者包的類型是否符合預期。
馬上能看出,測試程序不能在數字測試模式中采用固定循環周期的選通隔離所需I/Q數據。同樣,對同步或頭的數字匹配回路不能以DigRF速度,足夠快地通過ATE儀器的流水線,儀器也不能完成對頭信息的實時識別和決策。
ATE策略的比較
傳統生產測試系統有靜態的選通時序以及簡單的比較功能(例如H、L、X、M、V、存儲),因此它們自身并不具備強大的校準能力,以應對DigRF器件需要的非確定性。不過,這類測試儀中的數字儀器有所需要的數字捕捉能力,一般用于ADC(模數轉換器)輸出數據或DUT寄存器讀取操作。因此,你可以保留在這臺儀器上的投資,并且采用一種批量捕捉和后處理技術(block-capture-and-post-processing)應對DigRF的RF接收測試挑戰。
對于RF接收測試,一般CW(連續波)測試需要1kB至4kB的I/Q采樣,而日益普遍的采用調制波形的系統級測試則使用16 kB至32 kB的I/Q采樣。注意轉換為實際的串行位:
1k I/Q = 1024 [8 bits (I) + 8 bits (Q)] 協議_開銷 = 串行位數
為了解決實時情況下的非確定性行為,測試儀必須提供專為DigRF 3G DUT與數字捕捉之間編碼的數字邏輯。其目標是在數據到達測試儀的DSP(數字信號處理器)前,減輕捕捉時所出現的所有時序與數據不確定性問題。
一種測試選擇是在DIB(器件接口板)上設計一個FPGA(現場可編程門陣列)電路。這種方法可以用一片廉價器件提供定制邏輯,但也有三個麻煩:
評論