應用于無線傳感器網絡2. 4 GHz的低噪聲放大器設計
電路在1. 2 V電源電壓下工作電流約為6. 0 mA。
S11后仿真結果如圖4 所示,高增益時S11約為- 29. 8 dB,中增益時S11約為- 17. 7 dB,低增益時S11約為- 16. 3 dB。三種情況下S11均滿足小于- 10 dB,輸入匹配良好。
圖4 S11仿真結果
S21后仿真結果如圖5 所示,高增益時S21約為21. 2 dB,中增益時S21約為11. 0 dB,低增益時S11約為2. 8 dB。基本滿足設計指標中的高增益20 dB,中增益10 dB,低增益0 dB要求。
圖5 S21仿真結果
S22后仿真結果如圖6 所示,高增益時S22約為- 20. 7 dB,中增益時S22約為- 10 dB,低增益時S22約為- 10 dB。三種情況下S22均滿足小于- 10 dB,輸出匹配良好。
圖6 S22仿真結果
噪聲系數如圖7所示。在2. 43 GHz上,后仿真噪聲系數NF約為0. 49 dB,與最小噪聲系數NFmin后仿真結果0. 46 dB比較接近,噪聲匹配良好。
圖7 噪聲系數NF仿真結果
輸入1 dB壓縮點如圖8所示,在高增益下約為- 20. 2 dBm,根據1 dB壓縮點與IIP3的關系,可以推出,該放大器IIP3約為- 10. 6 dBm。
圖8 低噪聲放大器輸出1 dB壓縮點仿真結果
其它后仿真結果:反向隔離度S12在三種增益狀態下均小于- 45 dB;穩定度KF約為6. 2,其值遠大于1,放大器絕對穩定。
3 總結
本次設計的低噪聲放大器芯片在限定功耗的基礎上,保證了較高的增益,同時進行了輸入匹配的優化,實現了給定功耗條件下的功率和噪聲同時匹配。
該低噪聲放大器在最高增益為21 dB時噪聲系數約為0. 5 dB,并且通過放大器S11、S22參數反應出其輸入輸出阻抗功率匹配性能良好。放大器增益控制電路滿足設計要求。綜上所述,該低噪聲放大器性能優良,實現后有望應用于無線傳感網射頻收發芯片中。
評論