無線設備中CMOS頻率源的應用趨勢
自從60年前的數字革命開始,電子行業已經發生了許多變化,但有一種情況卻一直未變:每個電子系統中的同步數據傳輸參考頻率由石英晶體和陶瓷振蕩器產生。然而,最近幾年,這個數十億美元的市場發生了技術變革,包括像微機電振蕩器、精密壓電諧振器和單片標準CMOS器件等。
本文引用地址:http://www.104case.com/article/158167.htmCMOS振蕩器與石英晶體的特性比較
石英晶體振蕩器由于良好的穩定性、低相位噪聲和低抖動、易于使用,以及有大量供貨廠商而占據最流行頻率源的位置。但是,在其他方案中,CMOS技術提供一個優化的平臺,可以開發可行的、成本低廉和高性能的石英晶體替代產品。
● 對于消費類、計算機和存儲應用,CMOS振蕩器沒有最高頻率的限制,它的頻率范圍從kHz到幾百MHz,因此在某些應用中就可以避免使用帶有鎖相環(PLL)的頻率合成器。
● 單管芯的CMOS頻率源可以被封裝在當前能夠獲得的最薄IC封裝中,可以滿足消費電子產品對外形尺寸的嚴格要求。
● CMOS技術被廣泛應用在當今市場上的各種產品中,它有很好的可靠性和批量成本優勢。
● CMOS頻率源完全是單片集成電路,它們不依賴任何機械、壓電,或非集成的共震元件,因此很容易集成到其他電路中。例如,集成到USB物理層芯片中就不再需要石英晶體了,但仍然能夠保持良好的誤碼率,或者集成到高速SATA收發器中用于節省PCB占板面積,以及不需要石英參考源的多頻率時鐘集成電路中。
CMOS頻率參考源的最初市場主要是USB和SATA設備,在無線應用中也有比較大的增長。
從移動電話到微波爐、無線技術已經滲透到了現代生活的各個方面。無線通信標準在許多方面不同于有線通信,包括調制方案,以及通過相對較低功耗來長距離傳輸數據的更高載波頻率。在美國,載波頻率的頻譜范圍位于政府分配的頻率范圍之內,從9kHz~300GHz不等。
無線系統的一個主要組成部件是頻率源,它通常是石英晶體、聲表面波濾波器(SAW),或者CMOS振蕩器。在發送側,振蕩器可以產生或調制載波頻率,而在接收側,它可以幫助恢復接收數據。絕大多數的長距離和(或)高帶寬、高數據速率無線通信協議需要低噪聲振蕩器,并以10-6(百萬分之一)為單位來衡量它們的頻率穩定性。振蕩器的性能影響系統的同步精度、分布在特定頻譜空間的通道數,以及接收器的動態范圍。
現今的石英晶體振蕩器具有本征高品質因數(Q),是高性能無線通信鏈路的理想參考源。它們產生的頻率信號具有極好的近端相位噪聲。采用高質量的石英晶體振蕩器在100Hz偏移時可以產生-100~-120dBc/Hz或更低的相位噪聲。
而CMOS振蕩器有極好的遠端相位噪聲(Far-from-carrier Phase Noise),1MHz 偏移時相位噪聲小于-140dBc/Hz,它們的近端相位噪聲比石英晶體還差。因此,CMOS振蕩器不適合GSM/CDMA移動通信、GPS、Wi-Fi和其他高性能無線通信協議。
但也有許多其他的無線通信協議,如在面向短距離和低帶寬通信的ISM(工業、科學和醫療頻段)頻段應用中,CMOS振蕩器的頻率穩定性能是足夠的。同時,CMOS技術在某些方面比石英晶體具有更大的優勢。
CMOS振蕩器的應用
我們每天所接觸到的許多應用,從微波爐到車庫門的自動開啟和關閉,都利用了無線頻譜中的多個ISM頻段。最典型的例子是汽車胎壓監測系統(TPMS),用于監視輪胎的氣壓并將測量值傳輸給車載計算機,CMOS振蕩器可以改善這種應用的總體性能。
圖1 汽車胎壓監測系統利用CMOS振蕩器提高了整體性能
評論