基于LabVIEW和PXI平臺的6-DOF并聯機器人控制系統的開發
研究背景:
本文引用地址:http://www.104case.com/article/108857.htm并聯機器人以其卓越的性能正在走出實驗室,步入工業界和人們最為熟悉的日常生活中。早在1962年Gough and Whitehall就把并聯機器人作為輪胎檢測機。最近幾十年中,并聯機器人被用于飛行器模擬器、微操作機器人、手術機器人以及大型射電望遠鏡中的例子舉不勝舉。然而,此類并聯機器人大多存在開發周期長、系統不開放維護和升級困難、造價高昂以及系統特性不完善等缺點,這也是制約并聯機器人全面走向市場的瓶頸。如何在較短的時間內開發出系統特性好、成本低、功能齊全、界面友好的多自由度并聯機器人控制系統是一項挑戰性的工作。
本文以6-PPPS并聯機器人為控制對象,以NI公司的系列軟硬件產品為基礎,依托國家自然基金(No. 30770538)的支持,快速開發了此并聯機器人的開放式數字控制系統。
系統總體的設計
本課題所研究的并聯機器人的驅動由六個高精度的伺服電機及其驅動器承擔,每一軸上都設有前限位、后限位及原點三個開關,共18個I/O量。電機驅動需要進行以位置反解為基礎的軌跡規劃,使機器人的末端執行器以一定的軌跡準確到達預定位置,并根據預先規劃的軌跡進行工作,因此,并聯機器人的軌跡規劃和反解運算需要一個性能強大的計算器進行計算和存儲,并且這些存儲的數據實時地傳送到作為下位機的控制卡和驅動器上,以產生用于驅動電機的電流或電壓。考慮到系統需要大量的數據傳遞、精確同步以及I/O信號種類多的特點,我們首先選擇了PXI開發平臺,這是因為PXI不僅具有業內最高的總線帶寬和最低的傳輸延遲,而且提供從DC到6.6 GHz RF的各種模塊化的I/O。為了適應本系統進一步升級和后續模塊的嵌入,我們選擇了高性能的8槽機箱。控制器則采用內嵌2.2GHz Intel 奔騰4處理器的PXI-8186以滿足機器人軌跡規劃反解和數據分析的快速性。PXI-6511工業數字I/O接口板作為外圍模塊提供多達64路的隔離數字輸入。至于機器人控制系統的軟硬件具體設計和選型,我們將分別在下面逐一介紹。控制系統硬件之間的關系如圖1.

圖1.6-DOF并聯機器人控制系統的各部分之間的關系
控制系統硬件設計
由于本并聯機器人作為染色體切割裝備系統的宏動子系統,肩負著除染色體最終切割以外的絕大部分任務,具有高的定位精度和大的工作空間要求。其基本機構是一6-PPPS解耦的空間六自由度并聯機構,由六個高精度伺服電機驅動實現空間六維運動(X、Y、Z三個方向的移動和繞X、Y、Z三個方向的轉動),因為末端平臺要達到微米級精度和六個電機的協調控制,所以我們選用了NI公司性能卓越的PXI-7356多軸運動控制卡。此多軸運動控制卡的緩存斷點技術有效的提高了積分速度,對于一般的位置斷點能夠以2kHz的速率計算觸發點,對于等距分布點則能夠以高達4MHz的速率計算;此卡的兩軸PID控制周期可以達到62.5μs,8軸PID控制周期可以達到250μs,實時性遠遠高于一般試驗控制1ms的要求,如此高的計算效率適應了本系統的快速響應的特性。PXI-7356多軸運動控制卡的多軸同步時間小于一個采樣周期;其位置精度較高,位置反饋時位置誤差不超過正負一個正交碼盤計數(quadrature count),模擬量反饋時應用其內置的8路16位模擬量輸入采集功能,極大的提高了模數轉換的分辨率,使其位置誤差不超過一個最低有效位(LSB),如此高的精度為系統高精度的要求提供了很好的保障。另外,PXI-7356多軸運動控制卡自身的安全標準、S曲線調節功能、雙PID控制環以及多軸之間的電子齒輪配合能夠為系統提供可靠的穩定性。PXI-7356多軸運動控制卡及其配套的運動控制接口UMI-7774端口板具有用來控制固態繼電器和讀取數字編/譯碼器的64位數字I/O,使得系統中諸如18路限位、12路使能及眾多的報警等信號讀取和輸出更為方便快捷。鑒于以上考慮,我們認為NI公司的PXI-7356多軸運動控制卡及其配套模塊式適合本系統的要求,并選用。
評論