生物特征識別技術的發展趨勢及對數字信號處理器的挑戰
摘要: 本文討論了生物特征識別技術的發展趨勢,結合人臉識別分析了生物特征識別技術需要高性能的數字信號處理器的原因,并簡單介紹了Blackfin處理器的特點,指出正是由于Blackfin處理器的這些特點,使得該處理器非常適合作為嵌入式系統中的計算核心,以便將人臉識別等生物特征識別技術移植到嵌入式系統。
本文引用地址:http://www.104case.com/article/82030.htm關鍵詞: 生物識別;微控制器;Blackfin;MSA
引言
生物特征識別技術是指利用人體固有的生理特征或行為特征來進行個人身份鑒別認證的技術。生物特征識別技術包括采用人體固有的生理特征(如人臉、指紋、虹膜、靜脈)進行的身份認證技術和利用后天形成的行為特征(如簽名、筆跡、聲音、步態)進行的身份認證技術。與傳統的身份鑒定手段相比,基于生物特征識別的身份鑒定技術具有如下優點:(1)不會遺忘或丟失;(2)防偽性能好,不易偽造或被盜;(3)“隨身攜帶”,隨時隨地可用。正是由于生物特征身份識別認證具有上述優點,基于生物特征的身份識別認證技術受到了各國的極大重視。
生物特征識別技術及其發展趨勢
目前,常用的生物特征識別技術所用的生物特征有基于生理特征的如人臉、指紋、虹膜,也有基于行為特征的如筆跡、聲音等。下面就這些常見的生物特征識別技術的特點及其發展趨勢作一簡單介紹。
人臉識別
人臉識別作為一種基于生理特征的身份認證技術,與目前廣泛應用的以密碼、IC卡為媒介的傳統身份認證技術相比,具有不易偽造、不易竊取、不會遺忘的特點;而人臉識別與指紋、虹膜、掌紋識別等生理特征識別技術相比,具有非侵犯性、采集方便等特點。因而人臉識別是一種非常自然、友好的生物特征識別認證技術。
人臉識別技術包括圖像或視頻中進行人臉檢測、從檢測出的人臉中定位眼睛位置、然后提取人臉特征、最后進行人臉比對等一系列相關的技術。
最早的人臉識別系統建成于20世紀60年代,該系統以人臉特征點的間距、比率等參數作為特征,構建了一個半自動的人臉識別系統。此時的人臉識別研究多集中于研究如何提取特征點進行人臉識別,如人臉特征器官(眼角、嘴角、鼻孔)的相對位置、大小、形狀、面積及彼此間的幾何關系等。由于這些特征點難以準確定位、魯棒性差,因而采用這些方法的人臉識別系統的性能都很低。
自20世紀80年代開始,人臉識別技術出現了基于面部圖像的方法。與基于特征點的方法相比,基于面部圖像的方法不是提取人臉特征器官這一高層特征,而是將人臉作為一個圖像整體,從圖像中提取反映人臉特性的特征如DCT變換特征、小波特征、Gabor特征等等。基于面部圖像的方法由于利用了更多的底層信息,以及統計模式識別方法的引入,使得這類方法具有非常高的識別率和非常好的魯棒性。由于基于面部圖像的人臉識別算法具有很高性能,目前已經出現了不少推廣人臉識別技術的廠商,如國內的北京海鑫科金高科技股份有限公司、國外的L1ID等。
為了評測基于面部圖像的人臉識別算法的性能。美國ARPA和ARL于1993年至1996年建立了FERET數據庫,用于評測當時的人臉識別算法的性能。共舉行了三次測試FERET94、FERET95、FERET96。FERET測試的結果指出,光照、姿態和年齡變化會嚴重影響人臉識別的性能。
FERET的測試結果也表明了基于面部圖像的方法的缺點。人臉是一個三維非剛體,具有姿態、表情等變化,人臉圖像采集過程中易受到光照、背景、采集設備的影響。這些影響會降低人臉識別的性能。
為了克服姿態變化對人臉識別性能的影響,也為了進一步提高人臉識別性能,20世紀90年代后期,一些研究者開始采用基于3D的人臉識別算法。這些算法有的本身就采用三維描述人臉,有的則用二維圖像建立三維模型,并利用三維模型生成各種光照、姿態下的合成圖像,利用這些合成圖像進行人臉識別。
2000年后,人臉識別算法逐漸成熟,出現了商用的人臉識別系統。為了評測這些商用系統的性能,也作為FERET測試的延續,美國有關機構組織了FRVT2000、FRVT2002、FRVT2006測試。測試結果表明,人臉識別錯誤率在FRVT2006上下降了至少一個數量級,這種性能的提升在基于圖像的人臉識別算法和基于三維的人臉識別算法上都得到體現。此外,在可控環境下,虹膜、靜態人臉和三維人臉識別技術的性能是相當的。此外,FRVT2006還展現了不同光照條件下人臉識別性能的顯著提高,最后,FRVT2006表明人臉自動識別的性能優于人。值得一提的是,清華大學電子工程系作為國內唯一參加FRVT2006的評測的學術機構,其人臉自動識別性能優于人類。
FRVT2006為人臉識別后續的研究指明了方向,人臉識別中光照、年齡變化依然對人臉識別性能有很大影響,二維人臉識別的性能不比三維人臉識別差。
評論