新聞中心

        EEPW首頁 > 消費電子 > 設計應用 > 基于FPGA的計算機防視頻信息泄漏系統設計

        基于FPGA的計算機防視頻信息泄漏系統設計

        ——
        作者: 時間:2007-10-22 來源:廣東電子商貿網 收藏

          假如顯示終端為數字微鏡DMD(Digital MicromirrorDevice)顯示器。該顯示器將計算機每個像素點的圖像信號經過數字光處理DLP(Digital Light Processing)后,存入SDRAM雙向緩存器,當一幀圖像接收完畢時,內部數據處理電路同時激發各像素點對應的微鏡運動,完成一幀圖像的顯示。DMD顯示器峰值數字驅動電壓不超過33.5V,電磁輻射很低,且各微鏡片同時驅動,形成相互干擾的向外輻射信號,解碼難度極大,從而使其成為無信息泄漏的顯示器。此時,視頻電纜的輻射在整個視頻通路的輻射中就占主導地位。如果在視頻信號經過視頻電纜傳輸到顯示器之前就對其進行處理,則可以有效地降低電磁輻射和信息泄漏。

          1 泄漏機理及解決方案

          1.1 傳輸過程中泄漏機理在計

          算機視頻通路中,信息的傳送主要為并行傳送和串行傳送兩種方式。目前常見的都為串行傳輸,在串行傳輸的信號波長與其視頻電纜物理長度可比的情況下,視頻電纜起著天線作用,容易產生高強度的有用信息的電磁泄漏,這樣就可以較為容易地對串行信號實現時分接收、頻分接收和方位接收。所以串行視頻信息很容易被竊取及復現。

          在并行傳輸方式下,由于數據線間隔很小且發射信號頻率相同或相似,所以截獲難度要大得多。但將R、G、B三路串行模擬視頻信號分別轉化為數字信號后,若不經處理就直接進行傳輸,此時同時傳輸的仍是一個像素的不同位信息,因此,從像素角度來考慮,仍為串行傳輸。若傳輸的圖像僅有黑白兩種顏色,則此時并行傳輸電纜上某一時刻的數據為全“1”或全“0”,即并行電纜中各信號線具有相同的波形,也就不需對各信號線分別接收,此時視頻電纜類似于串行傳輸方式,有效信息就很容易被竊取。

          1.2 基于像素的并行傳輸方式

          為了有效地減少視頻信號被截獲的可能性,在視頻信號送至視頻電纜中傳輸之前就對其進行一定的格式轉換,使得在并行電纜上能同時傳輸多個像素,實現真正意義上的并行,即基于像素的并行傳輸。在這種并行傳輸方式下,即使接收方能接收到輻射信息,由于無法分辨各像素的順序,也就不能復現信息。

          本文設計的防信息泄漏系統就是通過對視頻信號的格式轉換處理,實現多個像素的同時傳輸。圖1為視頻信息格式轉換原理示意圖,輸入數據為串行模擬視頻信號經過A/D轉換后得到的數字視頻信號,系統接收信息時,其順序是按單個像素依次接收的,此時數據為“像素包”格式。通過格式轉換模塊處理之后,這些以“像素包”格式接收到的視頻信號數據被轉換成為按照“位平面”格式排列的輸出數據。此時并行電纜上傳輸的就是多個像素的數據。“位平面”格式的視頻數據傳輸至顯示端后再通過格式轉換模塊還原為“像素包”格式。

          

        視頻信息格式轉換原理示意圖

          順序接收到的“像素包”格式的數據可以用以下的集合方式予以描述:若系統接收到n個像素,則用D表示接收到的這一組視頻信號,S表示D中各元素間的先后順序關系,信號色彩數為23m種,即R、G、B三種顏色分別具有2m級灰度,則:

          

        像素包

          同樣,轉換為“位平面”格式后的輸出數據亦可以用同樣的集合方式進行描述:E表示格式轉換后的一幀圖像的數據,F表示E中各元素間的先后順序關系,則:

          

        位平面

          將視頻信息由集合D所表述的形式轉換成由集合E所表述的形式,就是傳輸數據格式轉換所要完成的工作,即要求首先輸出所有像素的第一位二進制數據,然后輸出所有像素的第二位二進制數據,直到最后輸出每個像素的最后一位二進制數據。因此,“位平面”數據是n個像素點的三種顏色的、具有相同“權值”的數據的集合。

          2 系統硬件設計

          2.1 總體方案設計

          根據上面提出的像素并行傳輸的原理,設計基于的防視頻信息泄漏系統。圖2為該系統硬件設計框圖,整個系統由采集端適配卡和顯示端適配卡組成。

          

        該系統硬件設計框圖

          高速視頻專用A/D轉換器采用AD公司的高性能AD9883A,主要特點是:

          (1)高達300MHz的帶寬和140MSPS的轉換率。

          (2)三路獨立的0~1.0V的輸入信號范圍,非常適合采樣視頻信號。

          (3)提供I2C總線接口等,以適應多種應用。

          高速視頻專用D/A轉換器采用AD公司的高性能ADV7125,主要特點是:

          (1)高達330M的吞吐量。

          ; (2)三路獨立的8位DA轉換器。

          (3)TTL兼容輸入信號,便于電路設計。

          (4)單電源5V或3.3V供電,廣泛應用于數字視頻系統、高分辨率彩色圖像顯示系統。

          系統工作原理是:將來自顯卡的視頻信號輸入至采集端適配卡,采集端適配卡上的A/D轉換器將R、G、B三路模擬視頻信號分別轉換成三路并行8位數字信號,同時也對行、場同步進行相位修復和幅度補償,使之變為標準的行、場同步信號,然后將該信號送至中,同時在狀態機的控制下將以像素為單位的視頻信息轉換為“位平面”格式。信號處理完后通過并行傳輸電纜傳輸至顯示端適配卡,而顯示端適配卡則負責將“位平面”信息還原為像素格式,并通過D/A轉換器將三路共24bit數字視頻信號還原成模擬信號送給顯示設備進行顯示。

          

        波形圖

          2.2 電磁兼容設計

          2.2.1 信號完整性設計

          系統中數字視頻信號對傳輸時延要求較高,在布線時,其走線的路徑要大體一致并且盡量短,以實現對傳輸時延的要求;合理安排去耦電容的擺放位置,盡可能接近所要進行去耦的電源;AD9883A芯片和ADV7125芯片周圍電路的布線要盡可能短,周圍的元器件要盡可能安排緊湊,以減小電流環路面積,從而減小靜電干擾;放置過孔時,注意不要過密,以免損壞鏡像層;適配卡所用的電阻、電容、電感和IC芯片均為表面帖裝元件,有利于抑制電磁干擾。

          2.2.2 電源完整性設計

          系統所用的A/D轉換器芯片、D/A轉換器芯片對電源有嚴格的要求,除了要有模擬電源和數字電源之分外,AD9883A還要有PLL電路的專門電源,而電源要有內核電源和數字輸出引腳的電源。因此,整個系統的電源設計是一個很大問題。這里用兩片LT1764作為FPGA的兩種電源,用兩片TPS76333作為AD9883A的兩種電源,一片TPS76333作為ADV7125的電源。兩塊適配卡均 采用四層板結構,頂層和底層作為信號的走線層,中間層分別是地層和電源層,以確保系統在高速運行時有良好的電源環境。

          

        電源完整性設計

          3系統邏輯實現及仿真

          FPGA芯片采用Altera公司Cyclone系列芯片EP1C6Q240C8。Cyclone系列芯片是基于1.5V,0.13μm工藝,具有時鐘鎖相環(PLL)和專用DDR接口,支持多種I/O標準的芯片。其內部嵌入了許多專用硬核模塊,被廣泛地用于可編程片上系統(SOPC)中。

          本系統對高速圖像信號進行處理,工作時鐘近100MHz。為了獲得更好的布線效果和系統性能,時鐘信號必須經過鎖相環到達全局時鐘布線網絡。本設計利用Altera公司的Maga Wizard設置Cyc lone PLL參數生成IPcore,解決了信號時延的問題,同時也滿足了讀取視頻信號時所需的建立、保持時間要求。圖3為使用FPGA內部PLL對輸入的點頻時鐘PXCLK_AD進行相移后的波形,圖中,pxclk與點頻同頻,經相位修復及幅度補償后用作系統基準時鐘,delayclk為點頻三分頻,用作延時時鐘。

          

        延時

          3.1 視頻信息格式轉換模塊

          在采集端適配卡中,視頻信息由“像素包”格式轉換為“位平面”格式,可由一個n



        評論


        相關推薦

        技術專區

        關閉
        主站蜘蛛池模板: 巴南区| 南宫市| 栖霞市| 台安县| 沿河| 蓝山县| 塔河县| 蒙山县| 读书| 恩施市| 琼海市| 越西县| 镇远县| 耿马| 福海县| 汉沽区| 湟中县| 临洮县| 望谟县| 安多县| 沾益县| 大埔县| 静安区| 保定市| 陕西省| 彭泽县| 恭城| 广宁县| 双城市| 兰州市| 郎溪县| 丘北县| 桐庐县| 扶沟县| 镇原县| 大化| 建平县| 遂昌县| 确山县| 泰安市| 乐陵市|