電動汽車車載充電器Boost PFC AC/DC變換器設計
確定電感量后,需選取合適的磁芯材料。APFC電路的升壓電感磁芯材料有:磁粉芯、鐵氧體磁芯和有隙非晶/微晶合金磁芯等。綜合分析,考慮鐵硅鋁磁粉芯的磁通密度(BS)高、體積小且不用開氣隙的優點,選擇鐵硅鋁磁粉芯作為磁芯材料。
本文引用地址:http://www.104case.com/article/278133.htm當主電路電流很大時,電感會出現直流偏置,導致磁路飽和。電流越大,磁路飽和程度越大。故選擇電感磁芯時,需考慮磁路飽和的問題。綜合考慮,選取型號為KS184060A的鐵硅鋁磁芯60匝,當磁路飽和程度最大時,電感量仍為110μH,略大于108μH.
3 PFC AC/DC變換器控制電路設計
控制電路采用雙閉環結構:外環為電壓環,內環為電流環,電流環控制主電路輸入電流跟蹤參考電流,實現功率因數校正。電壓環的輸出電壓與輸出參考電壓經電壓誤差放大器比較后的輸出信號與前饋電壓和輸入電壓經過乘法器運算,得到電流環的輸入參考電流。通過電流環的調節,產生主電路開關管通斷的驅動信號,實現系統功率因數校正且輸出穩定的直流電壓。乘法器的作用主要為信號相乘,此處,本文重點研究電壓環和電流環的設計。
3.1電壓環設計
電壓環的作用之一是將輸出電壓的變化反饋給電流環;作用之二是將二次諧波電壓衰減到指定水平,以降低輸入電流的畸變。另外,由于輸出電容的充、放電,輸出紋波電壓滯后輸入電壓,故電壓環的設計尚需兼顧考慮有足夠的相移,以保證輸出電壓紋波與輸入電壓同相位。綜上可知,需設置合理的補償電路,使得電壓環能夠滿足上述條件。
無補償時,電壓環開環傳遞函數表達式為:

式中:Pin為輸入功率,△V為電壓誤差放大器輸出電壓范圍。電壓開環傳遞函數的伯德圖如圖4中H曲線所示,二次諧波得不到衰減,導致輸入電流畸變變大,故需設置一個極點,使紋波電壓得到較好的衰減,同時將紋波電壓超前移相90°。
設計的補償電路傳遞函數為:

綜合考慮,配置極點頻率等于穿越頻率。此時,相位裕度為45°,系統穩定性較好,且二次諧波得到了較大的衰減。加入補償后的電壓環傳遞函數的伯德圖如圖4中N曲線所示,二次諧波獲得了較大的衰減,且紋波電壓超前相移90°。

圖4補償前、后的電壓環傳遞函數的伯德圖
3.2電流環設計
電流環的作用是調節主電路輸入電流,使之跟蹤主電路輸入電壓,實現高PF控制。電流環的設計思路是通過補償電路的合理設計,增加其響應速度,同時確保系統的穩定運行。
無補償電路時,電流環由PWM比較器和功率級組成,開環傳遞函數表達式為:

電流開環傳遞函數的伯德圖如圖5中H曲線所示,電流環帶寬很窄,且高頻噪聲得不到很好的抑制。為此,通過低頻處設置零點,提高低頻增益,增加帶寬;同時,在高頻處設置極點,抑制開關噪音。設計的補償電路開環傳遞函數為:

為此,選取合適的截止頻率,設定零點頻率以及極點頻率,使系統的相位裕度在45°以上,同時兼顧使電流環滿足高增益和大帶寬設計需求。設定截止頻率為6.65 kHz,零點頻率為4.5 kHz,極點頻率為46 kHz,相位裕度為48°,加入補償電路后電流環傳遞函數的伯德圖如圖5中N曲線所示,加入補償后的電流環在低頻處,系統帶寬較大;在高頻處,開關噪聲獲得了較好的衰減;此外,系統相位裕度超過45°,能夠實現系統的穩定運行。

圖5補償前、后電流環傳遞函數的伯德圖
評論