新聞中心

        EEPW首頁 > 測試測量 > 設計應用 > 紅外探測器技術的發展

        紅外探測器技術的發展

        作者: 時間:2014-02-24 來源:網絡 收藏

          (2)光伏型:主要是p-n結的光生伏特效應。能量大于禁帶寬度的紅外光子在結區及其附近激發電子空穴對。存在的結電場使空穴進入p區,電子進入 n 區,兩部分出現電位差。外電路就有電壓或電流信號。與光導探測器比較,光伏探測器背影限探測率大于40%;不需要外加偏置電場和負載電阻,不消耗功率,有高的阻抗。這些特性給制備和使用焦平面陣列帶來很大好處。

          (3)光發射-Schottky勢壘探測器:金屬和半導體接觸,典型的有PtSi/Si結構,形成Schott ky勢壘,紅外光子透過Si層為PtSi吸收,電子獲得能量躍上 Fermi能級,留下空穴越過勢壘進入Si襯底,PtSi層的電子被收集,完成紅外探測。充分利用Si集成技術,便于制作,具有成本低、均勻性好等優勢,可做成大規模(1024×1024甚至更大)焦平面陣列來彌補量子效率低的缺陷。有嚴格的低溫要求。用這類探測器,國內外已生產出具有像質良好的熱像儀。Pt Si/Si結構FPA是最早制成的IRFPA。

          (4)量子阱探測器(QWIP):將兩種半導體材料A和B用人工方法薄層交替生長形成超晶格,在其界面,能帶有突變。電子和空穴被限制在低勢能阱A層內,能量量子化,稱為量子阱。利用量子阱中能級電子躍遷原理可以做。90年代以來發展很快,已有512×512、64 0×480規模的QWIP GaAs/AlGaAs焦平面制成相應的熱像儀誕生。因為入射輻射中只有垂直于超晶格生長面的電極化矢量起作用,光子利用率低;量子阱中基態電子濃度受摻雜限制,量子效率不高;響應光譜區窄;低溫要求苛刻。人們正深入研究努力加以改進,可望與碲鎘汞探測器一爭高低。

          3、新技術飛速發展促進更新換代

          60年代以前多為單元探測器掃描成像,但靈敏度低,二維掃描系統結構復雜笨重。增加探測元,例如有N元組成的探測器,靈敏度增加N1/2倍,一個M×N陣列,靈敏度增長(M×N)1/2倍。元數增加還將簡化光機掃描機構,大規模凝視焦平面陣列,不再需要光機掃描,大大簡化整機系統。現代探測器技術進入第二、第三代,重要標志之一就是元數大大增加。另一方面是開發同時覆蓋兩個波段以上的雙色和多光譜探測器。所有進展都離不開新技術特別是半導體技術的開發和進步。幾項具有里程碑意義的技術有:

          (1)半導體精密光刻技術 使探測器技術由單元向多元線列探測器迅速發展,即后來稱為第一代探測器。

          (2)Si集成電路技術 Si讀出電路與光敏元大面陣耦合,誕生了所謂第二代的大規模紅外焦平面陣列探測器 。更進一步有Z平面和靈巧型智能探測器等新品種。此項技術還誘導產生非制冷焦平面陣列 ,使一度冷落的熱探測器重現勃勃生機。

          (3)先進的薄層材料生長技術 分子束外延、金屬有機化學汽相淀積和液相外延等技術可重復、精密控制生長大面積高度均勻材料,使制備大規模紅外焦平面陣列成為可能。也是量子阱探測器出現的前提。

          (4)微型制冷技術 高性能探測器低溫要求驅動微型制冷機的開發,制冷技術又促進了探測器的研制和應用。

          我國研制從1958年開始,至今已40多年。先后研制過PbS、PbSe、Ge:Au、Ge:Hg 、InSb、PbSnTe、HgCdTe、PtSi/Si、GaAs/AlGaAs量子阱和熱釋電探測器等。 隨著低維材料出現,納米電子學、光電一體化等技術日新月異,21世紀紅外探測器必有革命性的進展。物理學及材料科學是現代技術發展的主要基礎,現代技術飛速發展對物理學研究 又有巨大的反作用。

          4、高性能紅外探測器-碲鎘汞探測器

          1959年,英國Lawson等首先制成可變帶隙Hg1-xCdxTe固溶體合金,提供了紅外探測器設計空前的自由度。

        碲鎘汞有三大優勢:

          1)本征激發、高的吸收系數和高的量子效率(可超過80%)且有高的探測率;

          2)其最吸引人的特性是改變Hg、Cd配比調節響應波段,可以工作在各個紅外光譜區段并獲得最佳性能。而且晶格參數幾乎恒定不變,對制備復合禁帶異質結結構新器件特別重要

          3)同樣的響應波段,工作溫度較高,可工作的溫度范圍也較寬。

          碲鎘汞中,弱Hg-Te鍵(比Cd-Te鍵弱約30%),可通過熱處理或特定途徑形成P或N型,并可完成轉型。其電學性質如1載流子濃度低,2少數載流子壽命長,3電子空穴有效質量比大(~10.0),電子遷移率高,4介電常數小等有利于探測器性能。

          第一代碲鎘汞探測器主要是多元光導型,美國采用60、120和180元光導探測器作為熱像儀通用組件,英國則以70年代中期開發的SPRITE為通用組件。SPRITE是一種三電極光導器件,利用半導體中非平衡載流子掃出效應,當光點掃描速度與載流子雙極漂移速度匹配,使探測器在完成輻射探測的同時實現信號的時間延遲積分功能。8條SPRIET的性能可相當100元以上的多元探測器。結構、制備工藝和后續電子學大大簡化。現有技術又克服了高光機掃描速度和空間分辨率受限制等兩個缺陷。

        半導體制冷相關文章:半導體制冷原理


        紅外熱像儀相關文章:紅外熱像儀原理


        評論


        相關推薦

        技術專區

        關閉
        主站蜘蛛池模板: 安塞县| 缙云县| 日照市| 微山县| 灌云县| 伊通| 肥城市| 余庆县| 股票| 滦平县| 井冈山市| 浦县| 增城市| 焦作市| 登封市| 蒙阴县| 牙克石市| 梅河口市| 泽州县| 丽江市| 扎囊县| 吉安县| 梨树县| 都匀市| 阜南县| 榆林市| 睢宁县| 宁晋县| 淮阳县| 文成县| 梁河县| 巴东县| 织金县| 平安县| 隆回县| 西安市| 白沙| 西藏| 循化| 宜都市| 湟中县|