新聞中心

        EEPW首頁 > 電源與新能源 > 設計應用 > 基于多層PCB板設計的電磁兼容(EMC)考量與應用

        基于多層PCB板設計的電磁兼容(EMC)考量與應用

        作者: 時間:2014-01-11 來源:網絡 收藏

        (Electro - Magnetic Compatibility,簡稱EMC)是一門新興綜合性學科,它主要研究電磁干擾和抗干擾問題。 性是指電子設備或系統在規定的電磁環境電平下,不因電磁干擾而降低性能指標,同時它們本身產生的電磁輻射不大于限定的極限電平,不影響其它系統的正常運行,并達到設備與設備、系統與系統之間互不干擾、共同可靠工作的目的。電磁干擾(EMI)產生是由于電磁干擾源通過耦合路徑將能量傳遞給敏感系統造成的,它包括由導線和公共地線的傳導、通過空間輻射或近場耦合3種基本形式。 實踐證明,即使電路原理圖設計正確,印制電路板設計不當,也會對電子設備的可靠性產生不利影響,所以保證印制電路板性是整個系統設計的關鍵,本文主要討論電磁兼容技術及其在多層印制線路板( Printed Circuit Board,簡稱PCB)設計中的應用。

        本文引用地址:http://www.104case.com/article/227017.htm

        PCB是電子產品中電路元件和器件的支撐件,它提供電路元件和器件之間的電氣連接,是各種電子設備最基本的組成部分。 如今,大規模和超大規模集成電路已在電子設備中得到廣泛應用,而且元器件在印刷電路板上的安裝密度越來越高,信號的傳輸速度更是越來越快, 由此而引發的EMC問題也變得越來越突出。 PCB 有單面板(單層板) 、雙面板(雙層板)和多層板之分。 單面板和雙面板一般用于低、中密度布線的電路和集成度較低的電路, 多層板使用高密度布線和集成度高的電路。 從電磁兼容的角度看單面板和雙面板不適宜高速電路,單面、雙面布線已滿足不了高性能電路的要求,而多層布線電路的發展為解決以上問題提供了一種可能,并且其應用變得越來越廣泛。

        1 多層布線的特點

        PCB是由具有多層結構的有機和無機介質材料組成,層之間的連接通過過孔來實現,過孔鍍上或填充金屬材料就可以實現層之間的電信號導通。 多層布線之所以得到廣泛的應用,究其原因,有以下特點:

        (1)多層板內部設有專用電源層、地線層。 電源層可以作為噪聲回路,降低干擾;同時電源層還為系統所有信號提供回路,消除公共阻抗耦合干擾。 減小了供電線路的阻抗,從而減小了公共阻抗干擾。

        (2)多層板采用了專門地線層,對所有信號線而言都有專門接地線。 信號線的特性:阻抗穩定、易匹配,減少了反射引起的波形畸變;同時,采用專門的地線層加大了信號線和地線之間的分布電容,減小了串擾。

        2 印制電路板的疊層設計

        2. 1 PCB的布線規則

        多層電路板的電磁兼容分析可以基于克?;舴蚨珊头ɡ陔姶鸥袘伞?根據克?;舴蚨?, 任何時域信號由源到負載的傳輸都必須有一個最低阻抗的路徑。

        具有多層的PCB常常用于高速、高性能的系統,其中的多層用于直流(DC)電源或地參考平面。 這些平面通常是沒有任何分割的實體平面,因為具有足夠的層用作電源或地層,因此沒有必要將不同的DC電壓置于同一層上。 該層將會用作與它們相鄰的傳輸線上信號的電流返回通路。 構造低阻抗的電流返回通路是這些平面層最重要的EMC目標。

        信號層分布在實體參考平面層之間,它們可以是對稱的帶狀線和非對稱的帶狀線。 以一個12層板為例說明多層板的結構和布局 。 其分層結構為T - P - S - P - S - P - S - P - S - S - P - B,“T”為頂層,“P”為參考平面層,“S”為信號層,“B”為底層。 從頂層至底層依次為第1層、第2層、第12層。 頂層和底層用作元件的焊盤,信號在頂層和底層不應傳輸太長的距離,以便減少來自走線的直接輻射。 不相容的信號線應相互隔離,這樣做的目的是避免相互之間產生耦合干擾。 高頻與低頻、大電流與小電流、數字與模擬信號線是不相容的, 元件布置中就應該把不相容元件放在印制板上不同的位置, 在信號線的布置上仍要注意把它們隔離。設計時要注意以下3個問題:

        (1)確定哪個參考平面層將包含用于不同的DC電壓的多個電源區。 假設第11層有多個DC電壓,就意味著設計者必須將高速信號盡可能遠離第10層和底層,因為返回電流不能流過第10層以上的參考平面,并且需要使用縫合電容,第3、5、7和9層分別為高速信號的信號層。 重要信號的走線盡可能以一個方向布局,以便優化層上可能的走線通道數。 分布在不同層上的信號走線應互相垂直,這樣可以減少線間的電場和磁場的耦合干擾,第3和第7層可以設定為“東西”走線,而第5和第9層設置為“南北”走線。 走線布在哪一層要根據其到達目的地的方向。

        (2)高速信號走線時層的變化,及哪些不同的層用于一個獨立的走線,確保返回電流從一個參考平面流到需要的新參考平面。 這樣是為了減小信號環路面積,減小環路的差模電流輻射和共模電流輻射。 環路輻射與電流強度、環路面積成正比。 實際上,最好的設計并不要求返回電流改變參考平面,而是簡單地從參考平面的一側改變到另一側。 如信號層的組合可以用作信號層對:第3層和第5層,第5層和第7層,第7層和第9層,這就允許一個東西方向和南北方向形成一個布線組合。 但是第3層和第9層的組合就不應使用,因為這要求返回電流從第4層流到第8層。 盡管一個去耦電容可以放置在過孔附近,但在高頻時由于存在引線和過孔電感而使電容失去作用。 并且這種走線會使信號環路面積增大,不利減小電流輻射。

        (3)為參考平面層選定DC電壓。 該例中,由于處理器內部信號處理的高速性,致使在電源/地參考引腳上存在大量的噪聲。 因此,在為處理器提供相同DC電壓上使用去耦電容器非常重要,并且盡可能有效地使用去耦電容器。 降低這些元件電感的最好方法是連接走線盡可能短和寬,并且盡


        上一頁 1 2 下一頁

        評論


        相關推薦

        技術專區

        關閉
        主站蜘蛛池模板: 凤台县| 香港| 沅江市| 内黄县| 凤台县| 吴桥县| 合川市| 河东区| 宜丰县| 西乡县| 泾阳县| 伊春市| 鄂尔多斯市| 湾仔区| 长武县| 富蕴县| 昌宁县| 申扎县| 大兴区| 江孜县| 南丹县| 郓城县| 龙游县| 巴林左旗| 双鸭山市| 高清| 岳池县| 福鼎市| 江华| 广汉市| 延吉市| 永年县| 东明县| 青铜峡市| 渑池县| 河池市| 玛纳斯县| 鄂尔多斯市| 洪湖市| 温宿县| 麦盖提县|