新聞中心

        EEPW首頁 > 光電顯示 > 設計應用 > 探討LED燈具的功率因數

        探討LED燈具的功率因數

        作者: 時間:2013-08-06 來源:網絡 收藏
        從來不是什么問題,過去國家有規定,要功率超過75瓦才有的要求(到現在為止,對于筆記本電腦還是規定75W以下無要求)。所以從來沒有對燈具提出過什么功率因數的要求。就像日光燈吧,功率因數都是很差的,從來也沒有人提出過意見,國家也沒有提出什么要求。后來有了節能燈,國家雖然提出了一個要求,但是非常寬松,對15瓦以上才有要求,而節能燈大多數是小于15瓦的。所以等于沒有提出要求。唯獨出現以后反而嚴格要求起來了,只有在5瓦以下才不要求,5W以上必須要求功率因數>0.7。而除了很小的MR16射燈是3瓦以外,絕大多數都是在5瓦以上。所以這個規定正好卡住了LED的脖子。那么,讓我們仔細來了解一下有關功率因數的問題吧!

        什么是功率因數

        我們知道所有發電機都是旋轉機械,產生的電壓就是正弦波,這就是我們所謂的交流電。交流電有一個好處就是通過電磁感應可以用變壓器來改變其電壓,而且可以升高到幾十萬伏進行遠距離傳輸以減小傳輸中的損耗,到目的地以后再降下來變成我們常用的市電。我們現在的市電就是220V,50Hz的交流電。而在電工學里交流電是可以用矢量來表示的。矢量可以表示電壓也可以表示電流。對于純電阻的負載,電壓和電流是同相的,而對于純電容負載或純電感負載,電流和電壓就不同相,而是有一個90度的相角,或者稱為相位差。在純電感負載時,其上的電壓是領先電流90度,而純電容負載時,其上的電壓落后于電流90度。

        如果我們用波形表示時,通常把電壓表現為余弦波,如果電流落后于電壓,就是電感性負載,領先于電壓就是電容性負載。


        圖1. 電感性負載的交流電壓和交流電流之間的關系

        因為實際上純電感和純電容都不存在的,實際的負載只能稱為電感性負載或者是電容性負載。這時候其交流電壓和交流電流之間就有一個夾角φ,對于電感性負載我們把這個夾角稱為φL,而對于電容性負載的夾角就稱為φC。(見圖2)


        圖2. 電感性負載和電容性負載電壓和電流的矢量表示法

        功率等于電壓和電流的乘積,但是只有在純阻負載的時候(電壓和電流同相)是這樣,而在電感性或電容性負載的時候就要把電流的矢量投影到電壓矢量(水平軸)上去,也就是要乘以cosφL或者cosφC。我們通常就把這個cosφL或者cosφC稱為功率因數。

        但是由于這個夾角可以是正的,也可以是負的,所以功率因數也是可能為正數(感性負載)也可能為負數(容性負載)。

        但是當我們用矢量來代表電壓和電流時,前提是它們的頻率必須是完全相同的。而且是在一個線性系統里。

        在線性系統里我們也會把功率因數用有功功率和視在功率之比來表示。所謂有功功率就是和電流同相的那部分電壓和電流的有效值的乘積。而視在功率就是不考慮其間的相位差而將電壓和電流的有效值直接相乘所得到的“功率”。而這二者之比顯然就是前面所說的相角的余弦cosφ。

        各種家用電器的功率因數

        有人測試了各種家用電器的功耗和功率因數,其結果如下。

        這些數據當然僅供參考而已。

        需要說明的是:

        1.凡是電熱電器功率因數都是等于1,因為它們都是電阻負載。

        2.凡是帶馬達的家用電器(大多數白色家電)都是感性負載。

        3.凡是帶變壓器的家用電器(電視機、音響)也都是感性負載。

        4.24小時連續工作的電冰箱是一個耗電很大、功率因數很低的感性負載。

        5.其中的照明燈具因為主要是白熾燈,所以功率因數才會接近1。

        各種燈具的功率因數

        我們知道白熾燈因為是一個純電阻,它的功率因數當然等于1。但是使用越來越多的日光燈和最近國家大力推廣的節能燈就不是這樣了。長期以來,日光燈都是用一個大電感和一個起輝器來啟動。點亮以后大電感就串聯在電路里,所以它基本上是一個感性負載,它的功率因數只有0.51-0.56。以后改用電子鎮流器,功率因數要好一些,但是因為電子鎮流器很容易燒毀,所以用得最多的還是電感鎮流器。

        而節能燈的功率因數也是只有0.54左右,而且也是感性負載。

        的功率因數

        因為LED是一個半導體二極管,它需要直流供電,如果用市電供電的話,就一定會有一個整流器,通常是二極管整流橋。為了得到盡可能平滑的直流避免出現紋波閃爍,通常都需要加上一個大電解電容。而后面的LED可以近似為一個電阻,所以整個電路如圖3所示。

        其各種電流電壓如圖4所示。

        整流后的電壓電流波形都不是正弦波,而且雖然整流前的電壓波形是正弦波,但是其電流波形也不是正弦波。所以整個系統是一個非線性系統。而本來功率因數是針對線性系統定義的,而且要求輸入輸出電壓電流都是同頻率的正弦形,否則的話無法采用Cosφ。但是在非正弦系統中,因為電壓電流波形都不是正弦波,是沒有什么相位角可以說的。所以非線性系統中的功率因數必須重新定義。


        圖3. LED燈具的等效電路


        圖4. 橋式整流加電容濾波后的電壓電流波形

        如前所述功率因數的另一個定義是有功功率和視在功率之比。有功功率是指實際輸出的功率,而視在功率是指輸入電壓有效值和輸入電流有效值的乘積。這個在正弦波系統里是完全可以和Cosφ等效的,所以是沒有問題的。但是在非線性系統里,什么是有功功率什么是視在功率就很值得探討的了。

        因為在非線性系統里,其電流波形有很多高次諧波(見圖5),


        圖5. 普通橋式整流器的電流高次諧波

        所以到底拿什么來作為其視在功率,就是一個很大的問題?,F在有各種做法。

        1.將電流的基波有效值和正弦電壓有效值相乘來作為其視在功率,或是把基波電流相位的余弦作為功率因數,或是把電流波形的過零點相位的余弦作為功率因素。有些儀器就是這樣來測量的。由這個電流的波形圖中就可以看出,這種波形的高次諧波非常豐富,其基波很小,如果用基波電流來乘基波電壓,那么是得到的功率相比有功功率就很小,這樣它的功率因數就會很高甚至有可能大于1。

        例如在一些指針式的功率因素計就是如此。

        2.采用電壓的有效值和電流的有效值相乘來作為視在功率。

        現在很多數字式功率因數儀是采用電壓有效值和電流有效值的乘積來作為視在功率的。

        對于非正弦波電流的有效值可以用各次諧波電流的均方根值來表示:

        如果定義功率因數等于實際功率和視在功率之比

        通常把諧波失真定義為:

        現在的很多數字式功率因素計基本上都是用這種方法來定義的。

        但是功率的定義必須是相同頻率正弦波的電壓有效值和電流有效值的乘積。電流高次諧波有效值和基波電壓有效值的乘積不能認為是功率,因為其頻率不一樣,所以是沒有意義的數字。所以用這種方法來定義視在功率是有問題的。遺憾的是,現在很多數字儀表都是這樣來測量的。

        實際上,這個問題在學術界是一直存在爭議的,所以美國的碩士論文和瑞典的博士論文都還在研究這個問題。

        例如瑞典的Stefan Svensson在他的博士論文里就指出,在非線性的情況下,現在對于功率因數就已經有人提出了7種不同的定義,同樣一個非線性系統在不同的定義下,就可能得出完全不同的功率因數值。而且不管是哪種定義它都不符合當初在線性系統里提出功率因數的初衷。例如。在線性系統里,只要采用純電容或純電感就可以補償感性或容性的負載。這在非線性系統里顯然是無效的。所以這些定義的功率因數完全失去了原來功率因數的含義。

        其實,在非線


        上一頁 1 2 下一頁

        關鍵詞: LED燈具 功率因數

        評論


        相關推薦

        技術專區

        關閉
        主站蜘蛛池模板: 吉安市| 凌源市| 霍州市| 遂平县| 吴江市| 葵青区| 城口县| 滕州市| 扎鲁特旗| 孟连| 山东省| 汉源县| 彰化市| 邢台市| 龙泉市| 桓台县| 永定县| 陆河县| 辰溪县| 岳池县| 遂溪县| 大姚县| 岳阳市| 上思县| 天长市| 峨边| 工布江达县| 广南县| 岳阳市| 景谷| 揭阳市| 大同县| 江北区| 哈尔滨市| 托里县| 太湖县| 万安县| 巴塘县| 阿图什市| 当阳市| 永福县|