新聞中心

        EEPW首頁 > 嵌入式系統 > 設計應用 > 單片機復位電路原理

        單片機復位電路原理

        作者: 時間:2013-06-08 來源:網絡 收藏

        的作用

        在上電或復位過程中,控制CPU的復位狀態:這段時間內讓CPU保持復位狀態,而不是一上電或剛復位完畢就工作,防止CPU發出錯誤的指令、執行錯誤操作,也可以提高性能。

        無論用戶使用哪種類型的,總要涉及到的設計。而設計的好壞,直接影響到整個系統工作的可靠性。許多用戶在設計完單片機系統,并在實驗室調試成功后,在現場卻出現了“死機”、“程序走飛”等現象,這主要是單片機的復位電路設計不可靠引起的。

        基本的復位方式

        單片機在啟動時都需要復位,以使CPU及系統各部件處于確定的初始狀態,并從初態開始工作。89系列單片機的復位信號是從RST引腳輸入到芯片內的施密特觸發器中的。當系統處于正常工作狀態時,且振蕩器穩定后,如果RST引腳上有一個高電平并維持2個機器周期(24個振蕩周期)以上,則CPU就可以響應并將系統復位。單片機系統的復位方式有:手動按鈕復位和上電復位

        1、手動按鈕復位

        手動按鈕復位需要人為在復位輸入端RST上加入高電平(圖1)。一般采用的辦法是在RST端和正電源Vcc之間接一個按鈕。當人為按下按鈕時,則Vcc的+5V電平就會直接加到RST端。手動按鈕復位的電路如所示。由于人的動作再快也會使按鈕保持接通達數十毫秒,所以,完全能夠滿足復位的時間要求。

        1.jpg

        2、上電復位

        AT89C51的上電復位電路如圖2所示,只要在RST復位輸入引腳上接一電容至Vcc端,下接一個電阻到地即可。對于CMOS型單片機,由于在RST端內部有一個下拉電阻,故可將外部電阻去掉,而將外接電容減至1μF。上電復位的工作過程是在加電時,復位電路通過電 容加給RST端一個短暫的高電平信號,此高電平信號隨著Vcc對電容的充電過程而逐漸回落,即RST端的高電平持續時間取決于電容的充電時間。為了保證系統能夠可靠地復位,RST端的高電平信號必須維持足夠長的時間。上電時,Vcc的上升時間約為10ms,而振蕩器的起振時間取決于振蕩頻率,如晶振頻率為10MHz,起振時間為1ms;晶振頻率為1MHz,起振時間則為10ms。在圖2的復位電路中,當Vcc掉電時,必然會使RST端電壓迅速下降到0V以下,但是,由于內部電路的限制作用,這個負電壓將不會對器件產生損害。另外,在復位期間,端口引腳處于隨機狀態,復位后,系統將端口置為全“l”態。如果系統在上電時得不到有效的復位,則程序計數器PC將得不到一個合適的初值,因此,CPU可能會從一個未被定義的位置開始執行程序。

        2.jpg

        施密特觸發器相關文章:施密特觸發器原理

        上一頁 1 2 3 下一頁

        評論


        相關推薦

        技術專區

        關閉
        主站蜘蛛池模板: 长春市| 临西县| 南木林县| 江源县| 前郭尔| 利津县| 察隅县| 郓城县| 绵竹市| 新平| 泰顺县| 随州市| 南充市| 旬邑县| 晋中市| 寻乌县| 上饶县| 上高县| 荆州市| 翁源县| 正阳县| 嵊州市| 莱西市| 鄂伦春自治旗| 丹东市| 房产| 鲁甸县| 理塘县| 凤庆县| 虞城县| 五家渠市| 徐闻县| 马公市| 仙游县| 沙湾县| 金乡县| 黔南| 兴安盟| 通州市| 南靖县| 麻栗坡县|