嵌入式系統的掉電保護設計
通過軟件測算,電容放電可供最小系統工作時間在0.5~4.5S之間。這種測算方法很簡單.編寫一個掉電中斷服務子程序,這個程序只是不斷進行時間刷新操作。同樣,可以通過軟件測定在這段時間里向Flash擦寫2~3MB。可見,在采用這種硬件體制的情況下,系統掉電保護能夠得到可靠的保證。
3 掉電信號處理軟件方法的實現
在μClinux系統下,掉電信號的捕捉有兩種方式可以進行。一種是運用系統調用,即采用void(*signal(intslg,void(*func)(int)))(int)。這個函數可以為特定的中斷信號安排制訂的執行函數,用參數func傳遞。在μCllnux中,共有31個系統中斷信號,其中掉電信號為SIGPWR。假設掉電中斷服務處理程序為void interrupt-service(int),則中斷服務與信號關聯的方式為:signal(SIGPWR,interrupt_service)。這種方式充分利用系統調用,實現簡單。在掉電保護方案設計初期也是采用這種機制。但事實證明這種機制并不可靠,其原因是Linux內核產生和管理信號的機制并不完善,有可能存在信號丟失。查閱有關Unix或L1nux的相關資料,可以發現這種狀況也普遍存在于某些其他版本的Linux和Unix中。
另一種方式是采用守候進程的方式,開通一個進程,此進程專門等待中斷信號。主程序根據數據操作對象的不同,將自己的流程方案劃分成若干原子操作,所謂原子操作即劃定的程序塊要么完全執行,要么不執行。每個操作對應惟一狀態標志。在每個原子操作前,主進程都將會通過管道通信的方式閱讀中斷信號。如果中斷信號產生,主進程首先保存狀態標志,然后將相關數據寫往Flash后退出,電源恢復后,主進程首先根據標志字確定系統恢復方案。圖3用流程圖的方式實現這一過程。
下面是實現這一過程的程序片斷:
結語
基于該方案設計的稅控收款機在實際運行過程中,掉電保護功能完備。此掉電保護設計方法應用對象基于ARM和μClinux構建的嵌入式系統,在32位嵌入式系統開學中具有典玨型代表意義。因此在嵌人式系統設計中具有推廣價值。
評論