新聞中心

        EEPW首頁 > 設計應用 > 交錯式反相電荷泵—第二部分:實現和結果

        交錯式反相電荷泵—第二部分:實現和結果

        作者:ADI 公司 Jon Kraft,高級現場應用工程師 Alex Ilustrisimo,應用工程師 時間:2021-06-28 來源:電子產品世界 收藏


        本文引用地址:http://www.104case.com/article/202106/426593.htm

        簡介

        本系列文章的第一部分介紹了一種從正電源產生低噪聲負電源軌的獨特方法,并說明了控制其運行的方程式推導過程。第二部分將借助ADI公司新產品ADP5600深入探討這種交錯式反相電荷泵(IICP)的實際例子。我們將ADP5600的電壓紋波和電磁輻射干擾與標準反相電荷泵進行比較,以揭示交錯如何改善低噪聲性能。我們還將其應用于低噪聲相控陣波束成型電路,并使用第一部分中的公式來優化該解決方案的性能。

        世界首款商用交錯式反相電荷泵

        如第一部分所述,集成電路中使用IICP來生成較小的負偏置軌。ADP5600獨特地將低噪聲IICP與其他低噪聲特性和高級故障保護功能結合在一起。

        ADP5600是一款交錯式電荷泵逆變器,集成了低壓差(LDO)線性穩壓器。與傳統的基于電感或電容的解決方案相比,其獨特的電荷泵級具有更低的輸出電壓紋波和反射輸入電流噪聲。交錯作為一種低噪聲概念很巧妙,但交錯通道并不能解決所有噪聲問題。為了實現真正的低噪聲,需要一種專門設計的IC來實現IICP的低噪聲優勢,同時保持解決方案的小尺寸和高效率。

        固定和可編程開關頻率

        許多反相電荷泵的工作頻率為幾百kHz。這種相對較低的頻率限值要求相對較大的電容,并限制了頻率雜散可以放置的位置。ADP5600可以在100 kHz至1.1 MHz的開關頻率下工作,因而能在現代系統中高效使用。此外,該頻率始終是固定的,不隨輸出負載而變化。開關頻率變化(展頻調制)通常用于提高電荷泵效率,但在噪聲敏感的系統中可能會產生問題。

        外部頻率同步

        許多低噪聲系統需要將高幅度開關噪聲置于規定的頻帶中,以使所產生的噪聲對系統的影響最小。考慮到這一點,在噪聲敏感系統中,轉換器的工作頻率是同步的,但在電荷泵逆變器中,同步很少見。相比之下,ADP5600可以同步到高達2.2 MHz的外部時鐘。

        低壓差穩壓器

        ADP5600的輸入電壓范圍很寬,其電荷泵輸出電壓可能過高,無法為低壓電路供電。因此,ADP5600內置了一個LDO后置穩壓器。它還有一個以正電壓為基準的電源正常信號引腳,以便在LDO輸出處于穩壓狀態時輕松進行電源時序控制。

        故障保護

        最后,ADP5600具有一套全面的故障保護特性,適合于穩健的應用。保護特性包括過載保護、短路飛跨電容保護、欠壓鎖定(UVLO)、精密使能和熱關斷。另一個新穎的特性是飛跨電容限流,它也能降低飛跨電容充電時的峰值電流尖峰。

        ADP5600測試數據

        第一部分從理論上證明了與非交錯解決方案相比,IICP架構可顯著改善紋波。為簡潔起見,第一部分中說明的推導是理想化的,忽略了寄生效應、布局依賴性(IC和PCB)、時序失配(即不完美的50%振蕩器)和RDS失配。這些因素導致與計算和測量的電壓紋波有些偏差。一如既往,最好將ADP5600投入使用,觀測其性能,并使用推導的方程式指導電路優化以獲得最佳性能。

        此處使用標準ADP5600評估板,但插入了RFLY,并修改了CFLY和COUT的值。此外,我們使用ADP5600的SYNC特性來改變開關頻率。圖1所示框圖表明,各電荷泵以該SYNC頻率的一半進行開關。也就是說,fOSC = ? fSYNC。

        圖3和圖4分別顯示了在相同條件下運行時,交錯式和非交錯式反相電荷泵的輸出電壓紋波。

        image.png

        圖1 ADP5600交錯式反相電荷泵簡化框圖

        image.png

        圖2 ADP5600交錯式反相電荷泵測試設置

        image.png

        圖3 ADP5600 IICP輸出電壓,VIN = 6 V,COUT = CFLY = 2.2 μF,fOSC = 250 kHz,ILOAD = 50 mA

        image.png

        圖4 標準反相電荷泵輸出電壓,VIN = 6 V,COUT = CFLY = 2.2 μF,fOSC = 250 kHz,ILOAD = 50 mA

        在這些條件下,ADP5600的輸入和輸出電壓紋波幾乎比傳統反相電荷泵低14倍。我們還能確定此電壓紋波是否與本系列第一部分中推導出的方程式一致。回顧第一部分,IICP的輸出(或輸入)電壓紋波由下式給出:

        image.png

        image.pngwhereimage.png

        其中

        其中,f為fOSC,R為RON,C為CFLY

        使用式1,并將實際值代入ROUT和RON,便可比較計算出的和測量到的輸出電壓紋波。表1給出了多種測試配置下的結果,并指出了相對于非交錯式電荷泵方案的改善幅度。

        表1 不同使用案例下的VOUT紋波;VIN = 12 V,ILOAD = 50 mA,RON = 2.35 Ω*

        fOSC   (kHz)

        COUT (μF)

        CFLY (μF)

        RFLY   (Ω)

        實測VOUT   (V)

        實測ROUT   (Ω)

        VOUT紋波(mV)

        相對于非交錯式的改善

        實測

        計算

        250

        1.6

        1.6

        0

        11.48

        10

        5.3

        6.0

        12×

        250

        1.8

        1.8

        25

        8.86

        63

        3.4

        3.2

        18×

        250

        4.6

        1.6

        0

        11.48

        10

        1.9

        2.4

        12×

        500

        2.8

        1.6

        0

        11.45

        11

        2.5

        2.9

        7.5×

        500

        1.8

        1.8

        25

        8.74

        65

        3.1

        2.7

        10×

        1000

        1.6

        1.6

        0

        11.40

        12

        4.3

        4.2

        3.7×

        1000

        1.8

        1.8

        25

        8.438

        71

        2.8

        2.8

        5.6×

        * 使用的是COUT和CFLY的實際電容值(電容在電壓下會降額),而不是標稱值。

        表1顯示了交錯電壓紋波與式1的預測非常吻合。另外還顯示了其相對于標準的非交錯式反相電荷泵的改善幅度。此表中的某些設置還包括與CFLY串聯的附加外部電阻RFLY。結果表明,RFLY進一步降低了電壓紋波,但要以電荷泵輸出電阻為代價。式1和本系列文章第一部分中的分析也對此進行了預測。

        除輸出電壓紋波外,IICP的電磁輻射騷擾與標準電荷泵相比也有所改善。為了衡量這一點,將一根25 mm天線放在評估板上(圖5),并測試了多種配置。圖6顯示了這樣一種配置與標準的非交錯式電荷泵逆變器的比較。IICP拓撲可將第一和第三開關諧波的噪聲降低12 dB至15 dB。

        image.png

        圖5 采用ADP5600評估板的電磁輻射干擾測試設置

        image.png

        圖6 電磁輻射干擾,VIN = 12 V,ILOAD = 50 mA,CFLY = COUT = 2.2 μF,fSYNC = 500 kHz。綠色 = 標準,藍色 = IICP

        IICP應用示例

        數據轉換器、RF放大器和RF開關需要低噪聲電源。這些系統中的電源設計面臨的主要挑戰是:

        ■   功耗和高溫運行

        ■   EMI抗擾度和低EMI貢獻

        ■   輸入電壓范圍大

        ■   解決方案尺寸和面積應最小化

        為了說明IICP的完整設計和優勢,我們考慮一個為RF放大器、RF開關和相控陣波束成型器供電的應用。該應用包含在ADTR1107數據手冊中,圖7復制自其中。此示例需要幾個大功率正電壓軌——在這里是感性降壓轉換器的工作。另外還需要兩個負電壓軌:AVDD1和VSS_SW。ADAR1000使用AVDD1為VGG_PA和LNA_BIAS生成低噪聲偏置軌。AVDD1為–5 V、50 mA,VSS_SW為ADTR1107中RF開關的–3.3 V、<100 μA電源軌。每個ADAR1000使用四個ADTR1107,因此–3.3 V電源軌最大汲取1 mA電流。通常,這些系統的電源軌為12 V。

        ADP5600是從12 V電壓產生–5 V、50 mA和–3.3 V、1 mA電源軌的理想選擇,因為它實現了低輸入和輸出電壓紋波以及低電磁輻射干擾。此外,它能同步寬范圍的開關頻率,因而允許將開關噪聲放在對系統影響最小的位置。圖8顯示了最終設計。

        image.png

        圖7 ADAR1000加上四個ADTR1107電源軌

        image.png

        圖8 ADP5600和LT3093用于為AVDD1和VSS_SW供電

        LT3093是一款超低噪聲LDO線性穩壓器,支持高電壓,允許將ADP5600電荷泵輸出(CPOUT)直接連接到其輸入。其–5 V輸出由SET引腳上的電阻設置,當AVDD1電源軌符合要求時,可編程的電源良好引腳可以通知其他系統。ADP5600的LDO調節電流低得多的VSS_SW軌。盡管沒有LT3093那么低的噪聲或那么高的電源抑制比(PSRR),但它能夠為VSS_SW提供穩定的電源軌。所有三個軌(電荷泵、AVDD1和VSS_SW)的輸出電壓紋波如圖9所示。

        image.png

        圖9 電荷泵輸出電壓紋波,VIN = 12 V,COUT = 10 μF(標稱值),CFLY = 2.2 μF(標稱值),fSYNC = 1 MHz (fOSC = 500 kHz),ILOAD = 50 mA

        結論

        本系列文章由兩部分組成,提出了一種從正電源產生低噪聲負電源軌的新方法。第一部分介紹了交錯式反相電荷泵操作背后的概念。第二部分將這些想法付諸實踐,利用ADI公司的新產品ADP5600構建并測試了一個完整解決方案,并使用第一部分中推導出的數學模型對該解決方案進行了優化。另外還將其傳導發射和電磁輻射干擾與標準反相電荷泵進行了比較。在某些情況下,與標準電荷泵逆變器相比,其改善幅度達到18倍,這對于滿足現代精密和RF系統的低噪聲要求非常重要。

        作者簡介

        Jon Kraft是高級現場應用工程師,工作地點在科羅拉多州,已在ADI公司工作了13年。他主要致力于軟件定義無線電和航空航天相控陣雷達應用。他擁有羅斯豪曼理工學院電子工程學士學位和亞利桑那州立大學電子工程碩士學位。他擁有九項專利(六項與ADI相關),一項正在申請中。

        Alexander Ilustrisimo畢業于菲律賓中部大學,獲電子工程學士學位。他于2014年加入ADI公司,擔任電源管理產品應用工程師已6年有余,重點關注LDO穩壓器和開關穩壓器。



        關鍵詞:

        評論


        相關推薦

        技術專區

        關閉
        主站蜘蛛池模板: 陇川县| 河间市| 绥芬河市| 即墨市| 昌平区| 林甸县| 益阳市| 梧州市| 谷城县| 泌阳县| 绥化市| 南充市| 泰和县| 汉沽区| 白玉县| 景德镇市| 永吉县| 纳雍县| 镇沅| 保康县| 金川县| 枞阳县| 望谟县| 金坛市| 阿巴嘎旗| 剑河县| 新平| 桦川县| 辉县市| 西畴县| 略阳县| 吴堡县| 蒲城县| 乐东| 麻江县| 景洪市| 桂东县| 大方县| 屯门区| 贺州市| 方山县|