新聞中心

        EEPW首頁 > 電源與新能源 > 設(shè)計(jì)應(yīng)用 > 一種基于FPGA硬件求解函數(shù)的簡化方法

        一種基于FPGA硬件求解函數(shù)的簡化方法

        作者: 時間:2018-07-24 來源:網(wǎng)絡(luò) 收藏

        摘 要:本文研究了一種運(yùn)用進(jìn)行數(shù)據(jù)處理的方法,包括:提取輸入數(shù)據(jù)的高log2M個比特位的數(shù)據(jù),作為高有效位,根據(jù)預(yù)先設(shè)置的目標(biāo)函數(shù)的計(jì)算表格,查找所述高有效位對應(yīng)的目標(biāo)函數(shù)值y(n)以及高有效位+1對應(yīng)的目標(biāo)函數(shù)值y(n+1);提取輸入數(shù)據(jù)的剩余比特位數(shù)據(jù),作為低有效位,并將所述低有效位與y(n)和y(n+1)的差值相乘,得到偏移值off(n),將該偏移值與所述高有效位對應(yīng)的目標(biāo)函數(shù)值y(n)相加,將計(jì)算結(jié)果作為所述輸入數(shù)據(jù)對應(yīng)的目標(biāo)函數(shù)值。本方法具有控制簡單、結(jié)構(gòu)規(guī)則、單運(yùn)算周期、計(jì)算精度較高的特點(diǎn),適合于的數(shù)據(jù)處理實(shí)現(xiàn)。

        本文引用地址:http://www.104case.com/article/201807/383564.htm

        引言

        現(xiàn)場可編程門陣列()芯片在許多領(lǐng)域均有廣泛的應(yīng)用,尤其是在無線通信領(lǐng)域。FPGA具有極強(qiáng)的實(shí)時性和并行處理能力,這使其對信號進(jìn)行實(shí)時處理成為可能。FPGA內(nèi)部一般都包含邏輯單元(查找表/觸發(fā)器)、存儲單元(BRAM)、乘加單元(MAC)和一些其他的時鐘、引腳單元等[1-3]。

        現(xiàn)代處理的主要發(fā)展趨勢是:算法結(jié)構(gòu)日趨復(fù)雜,計(jì)算量大,實(shí)時性要求高,并且包含大量的三角函數(shù)、開方、對數(shù)等復(fù)雜函數(shù)的計(jì)算。但FPGA內(nèi)部的乘加單元并不適合直接進(jìn)行此類函數(shù)的計(jì)算,需要把各種復(fù)雜函數(shù)分解為簡單的移位、加法和乘法結(jié)構(gòu),進(jìn)而在FPGA中實(shí)現(xiàn)[4]。

        當(dāng)前,在FPGA上實(shí)現(xiàn)三角函數(shù)、開方、對數(shù)等復(fù)雜函數(shù)的計(jì)算,技術(shù)領(lǐng)域最常見的是除法,其次為開方和三角函數(shù),很少涉及對數(shù)和其他復(fù)雜一些的函數(shù)。而在FPGA具體的實(shí)現(xiàn)上,此類函數(shù)一般采用直接查表法或冪級數(shù)展開法,對于三角函數(shù)和開方的計(jì)算,也會采用CORDIC的計(jì)算方法,但這三種方法的應(yīng)用都有一定的局限性[4]。

        1 現(xiàn)有的FPGA實(shí)現(xiàn)方法

        (1)在FPGA上采用直接查表方法,來實(shí)現(xiàn)函數(shù)的計(jì)算,具有:

        優(yōu)點(diǎn)——通用性強(qiáng)、結(jié)構(gòu)簡單;

        缺點(diǎn)——隨著輸入位寬的增加,內(nèi)部存儲量的消耗呈指數(shù)性增長。

        表1給出了不同輸入輸出位寬所需要的存儲單元(BRAM)。

        表1 不同輸入輸出位寬所需要的存儲單元

        可以看出,輸入輸出位寬較小時,直接查表法可以滿足實(shí)現(xiàn)要求,但在處理領(lǐng)域,輸入輸出一般都在16bits以上,這時采用直接查表法就很難滿足實(shí)現(xiàn)需求。

        這里以開方算法為例進(jìn)行說明。采用直接查表法進(jìn)行開方計(jì)算有2種方式。

        方式一:在完全保證精度的條件下,采用直接查表法。若開方為16bits輸入16bits輸出,在完全保證精度的條件下,F(xiàn)PGA就需要存儲216深度的數(shù)據(jù),需要64塊18k BRAM的存儲空間。而一片中等FPGA一般包含幾十塊到幾百塊的18k BRAM存儲單元,此時計(jì)算就要用掉大部分的存儲單元,顯然不滿足實(shí)現(xiàn)的資源需求。

        方式二:降低精度,減少輸入位寬,采用直接查表法。

        表2 直接查表法開方誤差表

        可以看出,隨著實(shí)際有效輸入的增加,計(jì)算精度變大,很難滿足計(jì)算的誤差要求。

        (2)在FPGA上采用冪級數(shù)展開法計(jì)算函數(shù)。

        優(yōu)點(diǎn)——計(jì)算精度可控,多級展開可以達(dá)到較高的計(jì)算精度;

        缺點(diǎn)——冪級數(shù)展開法為了達(dá)到較高的精度,需要多級展開,這樣就需要采用較多的資源來實(shí)現(xiàn)。

        以exp為例(0~π/4范圍內(nèi)),采用三角函數(shù)冪級數(shù)展開法:

        若輸入為16bits,采用冪級數(shù)展開法的計(jì)算框圖如圖1。

        從資源方面考慮,三角函數(shù)冪級數(shù)展開法在FPGA中的實(shí)現(xiàn)需要5級乘法和3級加法,考慮每級乘法位寬需要擴(kuò)展,實(shí)際需要FPGA的12個乘法器

        (18bitsmes;18bits)資源。此外從誤差方面考慮,0~π/4范圍內(nèi),cosΦ的最大誤差為0.046%, sinΦ的最大誤差為0.35%。

        圖 1 冪級數(shù)展開法實(shí)現(xiàn)exp計(jì)算

        此外冪級數(shù)展開法的應(yīng)用范圍也比較有限,開方、倒數(shù)、對數(shù)、三角函數(shù)的計(jì)算可以采用冪級數(shù)展開法,但對于等較復(fù)雜的函數(shù)計(jì)算就不再適合用此方法進(jìn)行計(jì)算。

        (3)在FPGA上采用CORDIC法來實(shí)現(xiàn)函數(shù)的計(jì)算。

        優(yōu)點(diǎn):將復(fù)雜的運(yùn)算分解為簡單移位、加迭代

        運(yùn)算,結(jié)構(gòu)規(guī)則,運(yùn)算周期可以預(yù)測,比較適合于FPGA實(shí)現(xiàn);

        缺點(diǎn):一般使用多周期方式,單周期方式資源消耗較高,并且計(jì)算僅限于向量旋轉(zhuǎn)、開方等有限的范圍。

        采用CORCIC計(jì)算三角函數(shù),16bits輸入,在多周期條件下需要500個左右的LUT/FFs,在單周期條件下,需要1000個左右的LUT/FFs。

        2 本文提出的方法

        本文在FPGA上采用兩級方法進(jìn)行函數(shù)計(jì)算:第一級,直接利用輸入數(shù)據(jù)的高有效位確定計(jì)算結(jié)果的有效范圍;第二級,直接利用輸入數(shù)據(jù)的低有效位進(jìn)行計(jì)算結(jié)果的誤差調(diào)整。本研究方法充分利用FPGA內(nèi)部的各種邏輯資源、乘加器(或乘法器)資源和BRAM資源:可以根據(jù)FPGA內(nèi)部BRAM資源的大小采用相應(yīng)深度的數(shù)據(jù)表存儲第一級數(shù)據(jù)的有效范圍;采用FPGA內(nèi)部的乘加器(或乘法器)資源進(jìn)行乘加操作。此方法具有控制簡單,結(jié)構(gòu)規(guī)則,單運(yùn)算周期,計(jì)算精度較高的特點(diǎn),適合于FPGA的算法實(shí)現(xiàn)。

        此外,采用本研究方法的兩級計(jì)算的方法,不同函數(shù)的計(jì)算實(shí)現(xiàn)方法一致,只要修改第一級計(jì)算高有效位數(shù)據(jù)表格中的數(shù)據(jù),就可以復(fù)用設(shè)計(jì),有利于資源共享和模塊化實(shí)現(xiàn)。

        圖2 FPGA兩級法進(jìn)行函數(shù)的計(jì)算

        同現(xiàn)有方案的比較分析:

        (1)同直接查表法比較

        以開方為例進(jìn)行,資源和誤差的列表如表3。可以看出,在資源和誤差方面,本研究方法在FPGA上實(shí)現(xiàn)函數(shù)計(jì)算優(yōu)勢明顯。此外,F(xiàn)PGA可以通過增加存儲單元和擴(kuò)展輸出位寬來進(jìn)一步提高計(jì)算精度。

        表3 兩級計(jì)算法開方同直接查表法誤差比較表

        (2)同冪級數(shù)展開法的比較

        首先,本問題出的新方法比冪級數(shù)展開法的應(yīng)用范圍更廣泛。其次,在同樣的函數(shù)下,以exp的計(jì)算為例,本文提出的新方法資源更好,誤差更小。在資源方面,F(xiàn)PGA上采用的兩級計(jì)算方法, 同時計(jì)算只需要2個乘法器即可,遠(yuǎn)遠(yuǎn)少于冪級數(shù)展開法的資源消耗;在誤差方面,0~π/4范圍內(nèi),16bits輸入,cosΦ和sinΦ的最大誤差都小于10-5,因此此方法誤差比冪級數(shù)展開法誤差要小。

        (3)同CORDIC方法比較

        首先,本文提出的新方法比冪級數(shù)展開法的應(yīng)用范圍更廣泛。其次,在同樣的函數(shù)下,以exp的計(jì)算為例,新方法資源消耗相對較少,cosΦ和sinΦ同時計(jì)算只需要300個左右的LUT/FFs即可。而且,新方法采用的是單運(yùn)算周期模式,運(yùn)算速度更高。

        3 實(shí)現(xiàn)流程

        如圖3所示,本論文采取的實(shí)現(xiàn)方法如下:

        步驟一:根據(jù)一維函數(shù)的計(jì)算,預(yù)先生成一定深度的計(jì)算表格;

        步驟二:移位(可選),把數(shù)據(jù)的高有效位移位成1,增加較小數(shù)據(jù)的計(jì)算精度;

        步驟三:提取數(shù)據(jù)的高bits,作為第一級數(shù)據(jù)表的地址,得到數(shù)據(jù)值y(n);

        步驟四:提取數(shù)據(jù)的高bits,加1后作為第一級數(shù)據(jù)表的地址,得到下一個數(shù)據(jù)值y(n+1);

        步驟五:計(jì)算差值diff(n)=y(n+1)-y(n);

        步驟六:提取數(shù)據(jù)的低bits,作為有效的偏移數(shù)據(jù),同計(jì)算的差值相乘,得到偏移off(n)=data_lsb(n)*diff(n);

        步驟七:高位查表數(shù)據(jù)值y(n)同偏移相加得到計(jì)算值out=y(n)+off(n);

        步驟八:根據(jù)步驟一的移位逆操作(可選),得到實(shí)際輸出值。

        圖3 FPGA兩級法求解函數(shù)的流程框圖

        如圖4所示,對本研究方法進(jìn)行進(jìn)一步的詳細(xì)說明。

        對于任意一個一維函數(shù),若采樣點(diǎn)足夠密集,那么任何2個采樣點(diǎn)之間可以看作是線性關(guān)系,可以通過插值的方法來計(jì)算。

        圖4 FPGA兩級法求解函數(shù)的詳細(xì)說明

        由圖6可得出,兩極法的誤差范圍更小。

        4 結(jié)論

        在現(xiàn)代處理方面,F(xiàn)PGA具有極強(qiáng)的實(shí)時性和并行處理能力[5]。在FPGA的實(shí)現(xiàn)上,本文介紹了現(xiàn)有的直接查表法、冪級數(shù)展開法、CORDIC計(jì)算方法的優(yōu)缺點(diǎn)。在此基礎(chǔ)上,本文研究了基于FPGA的兩極計(jì)算法,并把它和以上三種方法進(jìn)行比較,得出兩極算法具有控制簡單、結(jié)構(gòu)規(guī)則、單運(yùn)算周期、計(jì)算精度較高的特點(diǎn)。此外,本文詳細(xì)介紹了兩極算法的實(shí)現(xiàn)流程,并舉例來進(jìn)行說明,使讀者能夠更好地掌握兩極算法。

        參考文獻(xiàn)

        Xilinx-Virtex7 Data Sheets. 2014.11.

        Xilinx-Virtex7 User Guides. 2014.11.

        Altera-StraTIx V Device Datasheet. 2015.7.

        貝耶爾.數(shù)字信號處理的FPGA實(shí)現(xiàn)(第3版)[M].2011.

        John G.Proakis,Dimitris G.Manolakis.數(shù)字信號處理DD原理、算法與應(yīng)用(第四版)[M].



        關(guān)鍵詞: 數(shù)字信號 FPGA

        評論


        相關(guān)推薦

        技術(shù)專區(qū)

        關(guān)閉
        主站蜘蛛池模板: 崇仁县| 尼玛县| 江山市| 陆良县| 三台县| 弋阳县| 读书| 阜阳市| 毕节市| 滦南县| 江阴市| 会同县| 元阳县| 甘泉县| 沙田区| 临洮县| 鄂伦春自治旗| 汪清县| 中牟县| 福安市| 海宁市| 台东市| 三亚市| 奉新县| 庆安县| 玛沁县| 内乡县| 玛纳斯县| 泸水县| 黎川县| 普格县| 龙泉市| 镇原县| 榆树市| 新龙县| 奇台县| 淳安县| 韶山市| 通江县| 富源县| 城固县|