新聞中心

        EEPW首頁 > 嵌入式系統 > 設計應用 > 9G-STM32 EWARM開發過程簡介之五

        9G-STM32 EWARM開發過程簡介之五

        作者: 時間:2016-11-29 來源:網絡 收藏

        /**
        * @brief This routine is for writing one or several 2048 Bytes Page size.
        * @param pBuffer: pointer on the Buffer containing data to be written
        * @param PageAddress: First page address
        * @param NumPageToWrite: Number of page to write
        * @retval : New status of the NAND operation. This parameter can be:
        * - NAND_TIMEOUT_ERROR: when the previous operation generate
        * a Timeout error
        * - NAND_READY: when memory is ready for the next operation
        * And the new status of the increment address operation. It can be:
        * - NAND_VALID_ADDRESS: When the new address is valid address
        * - NAND_INVALID_ADDRESS: When the new address is invalid address
        */

        uint32_t FSMC_NAND_WriteSmallPage(uint8_t *pBuffer, uint32_t PageAddress, uint32_t NumPageToWrite)
        {
        uint32_t index = 0x00, numpagewritten = 0x00,addressstatus = NAND_VALID_ADDRESS;
        uint32_t status = NAND_READY, size = 0x00;
        uint32_t data = 0xff;

        while((NumPageToWrite != 0x00) && (addressstatus == NAND_VALID_ADDRESS) && (status == NAND_READY))
        {
        /* Page write command and address */
        *(__IO uint8_t *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_WRITE0;

        *(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_1st_CYCLE(PageAddress);
        *(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_2nd_CYCLE(PageAddress);
        *(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_3rd_CYCLE(PageAddress);
        *(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_4th_CYCLE(PageAddress);

        /* Calculate the size */
        size = NAND_PAGE_SIZE + (NAND_PAGE_SIZE * numpagewritten);

        /* Write data */
        for(; index < size; index++)
        {
        *(__IO uint8_t *)(Bank_NAND_ADDR | DATA_AREA) = pBuffer[index];
        }

        *(__IO uint8_t *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_WRITE1;

        while( GPIO_ReadInputDataBit(GPIOG, GPIO_Pin_6) == 0 );

        /* Check status for successful operation */
        status = FSMC_NAND_GetStatus();

        data = *(__IO uint8_t *)(Bank_NAND_ADDR | DATA_AREA);
        if(!(data&0x1)) status = NAND_READY;

        if(status == NAND_READY)
        {
        numpagewritten++; NumPageToWrite--;

        /* Calculate Next small page Address */
        if(PageAddress++ > (NAND_MAX_ZONE*NAND_ZONE_SIZE*NAND_BLOCK_SIZE))
        {addressstatus = NAND_INVALID_ADDRESS;}
        }
        }

        return (status | addressstatus);
        }

        /**
        * @brief This routine is for sequential read from one or several
        * 2048 Bytes Page size.
        * @param pBuffer: pointer on the Buffer to fill
        * @param PageAddress: First page address
        * @param NumPageToRead: Number of page to read
        * @retval : New status of the NAND operation. This parameter can be:
        * - NAND_TIMEOUT_ERROR: when the previous operation generate
        * a Timeout error
        * - NAND_READY: when memory is ready for the next operation
        * And the new status of the increment address operation. It can be:
        * - NAND_VALID_ADDRESS: When the new address is valid address
        * - NAND_INVALID_ADDRESS: When the new address is invalid address
        */


        uint32_t FSMC_NAND_ReadSmallPage(uint8_t *pBuffer, uint32_t PageAddress, uint32_t NumPageToRead)
        {
        uint32_t index = 0x00, numpageread = 0x00, addressstatus = NAND_VALID_ADDRESS;
        uint32_t status = NAND_READY, size = 0x00;

        *(__IO uint8_t *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_READ1;

        while((NumPageToRead != 0x0) && (addressstatus == NAND_VALID_ADDRESS))
        {
        /* Page Read command and page address */

        *(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_1st_CYCLE(PageAddress);
        *(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_2nd_CYCLE(PageAddress);
        *(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_3rd_CYCLE(PageAddress);
        *(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_4th_CYCLE(PageAddress);

        *(__IO uint8_t *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_READ2;

        while( GPIO_ReadInputDataBit(GPIOG, GPIO_Pin_6) == 0 );

        /* Calculate the size */
        size = NAND_PAGE_SIZE + (NAND_PAGE_SIZE * numpageread);

        /* Get Data into Buffer */
        for(; index < size; index++)
        {
        pBuffer[index]= *(__IO uint8_t *)(Bank_NAND_ADDR | DATA_AREA);
        }

        numpageread++;NumPageToRead--;

        /* Calculate page address */
        if(PageAddress++ > (NAND_MAX_ZONE*NAND_ZONE_SIZE*NAND_BLOCK_SIZE))
        {addressstatus = NAND_INVALID_ADDRESS;}
        }

        status = FSMC_NAND_GetStatus();

        return (status | addressstatus);
        }

        /**
        * @brief This routine erase complete block from NAND FLASH
        * @param PageAddress: Any address into block to be erased
        * @retval :New status of the NAND operation. This parameter can be:
        * - NAND_TIMEOUT_ERROR: when the previous operation generate
        * a Timeout error
        * - NAND_READY: when memory is ready for the next operation
        */

        uint32_t FSMC_NAND_EraseBlock(uint32_t PageAddress)
        {
        uint32_t data = 0xff, status = NAND_ERROR;

        *(__IO uint8_t *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_ERASE0;

        *(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_3rd_CYCLE(PageAddress);
        *(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_4th_CYCLE(PageAddress);

        *(__IO uint8_t *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_ERASE1;

        while( GPIO_ReadInputDataBit(GPIOG, GPIO_Pin_6) == 0 );

        /* Read status operation ------------------------------------ */
        FSMC_NAND_GetStatus();

        data = *(__IO uint8_t *)(Bank_NAND_ADDR | DATA_AREA);

        if(!(data&0x1)) status = NAND_READY;

        return (status);
        }

        /**
        * @brief This routine reset the NAND FLASH
        * @param None
        * @retval :NAND_READY
        */

        uint32_t FSMC_NAND_Reset(void)
        {
        *(__IO uint8_t *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_RESET;

        return (NAND_READY);
        }

        /**
        * @brief Get the NAND operation status
        * @param None
        * @retval :New status of the NAND operation. This parameter can be:
        * - NAND_TIMEOUT_ERROR: when the previous operation generate
        * a Timeout error
        * - NAND_READY: when memory is ready for the next operation
        */


        uint32_t FSMC_NAND_GetStatus(void)
        {
        uint32_t timeout = 0x1000000, status = NAND_READY;

        status = FSMC_NAND_ReadStatus();

        /* Wait for a NAND operation to complete or a TIMEOUT to occur */
        while ((status != NAND_READY) &&( timeout != 0x00))
        {
        status = FSMC_NAND_ReadStatus();
        timeout --;
        }

        if(timeout == 0x00)
        {
        status = NAND_TIMEOUT_ERROR;
        }

        /* Return the operation status */
        return (status);
        }

        /**
        * @brief Reads the NAND memory status using the Read status command
        * @param None
        * @retval :The status of the NAND memory. This parameter can be:
        * - NAND_BUSY: when memory is busy
        * - NAND_READY: when memory is ready for the next operation
        * - NAND_ERROR: when the previous operation gererates error
        */

        uint32_t FSMC_NAND_ReadStatus(void)
        {
        uint32_t data = 0x00, status = NAND_BUSY;

        /* Read status operation ------------------------------------ */
        *(__IO uint8_t *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_STATUS;
        data = *(__IO uint8_t *)(Bank_NAND_ADDR);

        if((data & NAND_ERROR) == NAND_ERROR)
        {
        status = NAND_ERROR;
        }
        else if((data & NAND_READY) == NAND_READY)
        {
        status = NAND_READY;
        }
        else
        {
        status = NAND_BUSY;
        }

        return (status);
        }
        2,fsmc_nand.h文件:
        /* Define to prevent recursive inclusion -------------------------------------*/
        #ifndef __FSMC_NAND_H
        #define __FSMC_NAND_H

        /* Includes ------------------------------------------------------------------*/
        #include "stm32f10x.h"

        /* Exported types ------------------------------------------------------------*/
        typedef struct
        {
        uint8_t Maker_ID;
        uint8_t Device_ID;
        uint8_t Third_ID;
        uint8_t Fourth_ID;
        }NAND_IDTypeDef;

        typedef struct
        {
        uint16_t Zone;
        uint16_t Block;
        uint16_t Page;
        } NAND_ADDRESS;

        /* Exported constants --------------------------------------------------------*/
        /* NAND Area definition for STM3210E-EVAL Board RevD */
        #define CMD_AREA (uint32_t)(1<<16) /* A16 = CLE high */
        #define ADDR_AREA (uint32_t)(1<<17) /* A17 = ALE high */
        #define DATA_AREA ((uint32_t)0x00000000)

        /* FSMC NAND memory command */
        #defineNAND_CMD_READ1 ((uint8_t)0x00)
        #define NAND_CMD_READ2 ((uint8_t)0x30)

        #define NAND_CMD_WRITE0 ((uint8_t)0x80)
        #define NAND_CMD_WRITE1 ((uint8_t)0x10)

        #define NAND_CMD_MOVE0 ((uint8_t)0x00)
        #define NAND_CMD_MOVE1 ((uint8_t)0x35)
        #define NAND_CMD_MOVE2 ((uint8_t)0x85)
        #define NAND_CMD_MOVE3 ((uint8_t)0x10)

        #define NAND_CMD_ERASE0 ((uint8_t)0x60)
        #define NAND_CMD_ERASE1 ((uint8_t)0xD0)

        #define NAND_CMD_READID ((uint8_t)0x90)
        #define NAND_CMD_IDADDR ((uint8_t)0x00)

        #define NAND_CMD_STATUS ((uint8_t)0x70)
        #define NAND_CMD_RESET ((uint8_t)0xFF)

        /* NAND memory status */
        #define NAND_VALID_ADDRESS ((uint32_t)0x00000100)
        #define NAND_INVALID_ADDRESS ((uint32_t)0x00000200)
        #define NAND_TIMEOUT_ERROR ((uint32_t)0x00000400)
        #define NAND_BUSY ((uint32_t)0x00000000)
        #define NAND_ERROR ((uint32_t)0x00000001)
        #define NAND_READY ((uint32_t)0x00000040)

        /* FSMC NAND memory parameters */
        //#define NAND_PAGE_SIZE ((uint16_t)0x0200) /* 512 bytes per page w/o Spare Area */
        //#define NAND_BLOCK_SIZE ((uint16_t)0x0020) /* 32x512 bytes pages per block */
        //#define NAND_ZONE_SIZE ((uint16_t)0x0400) /* 1024 Block per zone */
        //#define NAND_SPARE_AREA_SIZE ((uint16_t)0x0010) /* last 16 bytes as spare area */
        //#define NAND_MAX_ZONE ((uint16_t)0x0004) /* 4 zones of 1024 block */

        /* FSMC NAND memory HY27UF081G2A-TPCB parameters */
        #define NAND_PAGE_SIZE ((uint16_t)0x0800) /* 2048 bytes per page w/o Spare Area */
        #define NAND_BLOCK_SIZE ((uint16_t)0x0040) /* 64x2048 bytes pages per block */
        #define NAND_ZONE_SIZE ((uint16_t)0x0200) /* 512 Block per zone */
        #define NAND_SPARE_AREA_SIZE ((uint16_t)0x0040) /* last 64 bytes as spare area */
        #define NAND_MAX_ZONE ((uint16_t)0x0002) /* 2 zones of 1024 block */

        /* FSMC NAND memory data computation */
        #define DATA_1st_CYCLE(DATA) (uint8_t)((DATA)& 0xFF) /* 1st data cycle */
        #define DATA_2nd_CYCLE(DATA) (uint8_t)(((DATA)& 0xFF00) >> 8) /* 2nd data cycle */
        #define DATA_3rd_CYCLE(DATA) (uint8_t)(((DATA)& 0xFF0000) >> 16) /* 3rd data cycle */
        #define DATA_4th_CYCLE(DATA) (uint8_t)(((DATA)& 0xFF000000) >> 24) /* 4th data cycle */

        /* FSMC NAND memory HY27UF081G2A-TPCB address computation */
        #define ADDR_1st_CYCLE(PADDR) (uint8_t)(0x0) /* 1st addressing cycle */
        #define ADDR_2nd_CYCLE(PADDR) (uint8_t)(0x0)/* 2nd addressing cycle */
        #define ADDR_3rd_CYCLE(PADDR) (uint8_t)(PADDR & 0xFF) /* 3rd addressing cycle */
        #define ADDR_4th_CYCLE(PADDR) (uint8_t)((PADDR>>8) & 0xFF)/* 4th addressing cycle */

        /* Exported macro ------------------------------------------------------------*/
        /* Exported functions ------------------------------------------------------- */
        void FSMC_NAND_Init(void);
        void FSMC_NAND_ReadID(NAND_IDTypeDef* NAND_ID);
        uint32_t FSMC_NAND_WriteSmallPage(uint8_t *pBuffer, uint32_t Address, uint32_t NumPageToWrite);
        uint32_t FSMC_NAND_ReadSmallPage (uint8_t *pBuffer, uint32_t Address, uint32_t NumPageToRead);
        uint32_t FSMC_NAND_MoveSmallPage (uint32_t SourcePageAddress, uint32_t TargetPageAddress);
        //uint32_t FSMC_NAND_WriteSpareArea(uint8_t *pBuffer, NAND_ADDRESS Address, uint32_t NumSpareAreaTowrite);
        //uint32_t FSMC_NAND_ReadSpareArea(uint8_t *pBuffer, NAND_ADDRESS Address, uint32_t NumSpareAreaToRead);
        uint32_t FSMC_NAND_EraseBlock(uint32_t Address);
        uint32_t FSMC_NAND_Reset(void);
        uint32_t FSMC_NAND_GetStatus(void);
        uint32_t FSMC_NAND_ReadStatus(void);
        //uint32_t FSMC_NAND_AddressIncrement(NAND_ADDRESS* Address);

        #endif /* __FSMC_NAND_H */
        七,NFTL代碼層
        有關NFTL代碼,自行處理。

        本文引用地址:http://www.104case.com/article/201611/323209.htm

        上一頁 1 2 下一頁

        評論


        技術專區

        關閉
        主站蜘蛛池模板: 泽普县| 南丰县| 宜宾市| 辽阳市| 平定县| 汽车| 英山县| 河曲县| 甘孜县| 平陆县| 当阳市| 榆中县| 怀宁县| 游戏| 攀枝花市| 武宁县| 桂平市| 云浮市| 年辖:市辖区| 枣阳市| 玉山县| 铜陵市| 沛县| 收藏| 库伦旗| 万源市| 虞城县| 高淳县| 隆子县| 渑池县| 望都县| 衡东县| 沁水县| 通城县| 镶黄旗| 治县。| 蕉岭县| 西贡区| 安西县| 承德县| 洞口县|