基于DSP+ARM的便攜式電能質量分析儀設計
1.2 數據采集和處理模塊
電能質量分析儀需要有較高的測量準確度,并且電網電壓電流信號除了50 Hz工頻分量以外,還包含電壓瞬變、短時電壓驟升驟降等因素引起的高頻分量;按照一般電網測試要求,需要檢測8路信號(4路電壓和4路電流);這里需要高速、高分辨率、多通道、低功耗的ADC芯片。 TI公司出品的AD7655是一款低成本、4通道、1 MSPS采樣率、16位ADC芯片。該芯片典型功耗為120 mW,采樣率為10 KSPS時只有2.6 mW,滿足系統低功耗要求;芯片內有兩個低噪聲、寬頻帶的采樣保持器和相應的模擬開關,允許兩個通道同時采樣。選用兩片AD7655可滿足系統設計需要。
數字信號處理器選用ADI公司的ADSP-21161N32位浮點DSP芯片。該芯片采用超級哈佛結構,擁有多條內部總線、高速運算單元、大容量存儲器、靈活多樣的外部接口。它的內核工作頻率可達100 MHz,外部總線工作頻率可達50 MHz,運算處理速度可高達600 MIPS,以較低的工作頻率實現了較高的處理能力,同時降低了功耗。而ADI公司提供的根據處理器量身制作的IDE環境極大的方便了DSP軟件開發,最大程度上發揮了處理器的性能。
兩片AD7655與DSP通過“三線”SPI接口連接,DSP對數據進行緩存并進行一系列運算,將計算結果通過LINK PORTS接口發送給FIFO實現數據傳輸功能。ADC的采樣時鐘、每個ADC中的通道切換和雙ADC調度等控制邏輯由協控制器實現。
1. 3 協控制器
協控制器邏輯電路框圖如圖2所示。圖2中,采樣時鐘發生器為A/D轉換器提供采樣時鐘;ADC通道輪換控制電路協調8個通道的數據轉換次序,協助DSP準確地讀取各相電壓電流信號;DSP啟動模式控制電路協助DSP上電初始化程序從FLASH自啟動;FIFO讀時鐘邏輯電路由ARM嵌入式平臺控制,產生讀時鐘,完成DSP與ARM系統的數據傳輸;網卡地址控制邏輯為CS8900網卡提供讀寫邏輯。本文引用地址:http://www.104case.com/article/195448.htm
1.4 ARM嵌入式平臺
ARM嵌入式平臺硬件配置如圖1所示。選用三星公司S3C2410芯片,外擴64 MB SDRAM和64 MBFLASH。該嵌入式平臺有眾多外設接口:SPI接口用于和DSP命令傳輸;LCD接口用于TFT液晶屏的驅動;USB接口適用于多種即插即用設備;SD卡接口可插入大容量SD卡用于數據存儲;觸摸屏接口可實現觸摸屏控制。為了實現儀器的網絡化,該系統擴展了網卡芯片CS890OA;為了系統調試的安全性,將RS 232接口進行隔離處理。
ARM與DSP之間通信和數據傳輸通過SPI接口和FIFO實現。ARM通過SPI接口發送命令,使DSP進行相應的數學運算及傳輸數據,系統設定ARM為主
設備,DSP為從設備。FIFO用于傳輸DSP的計算結果和波形數據;FIFO芯片采用低功耗異步芯片SN74ALVC7805,數據傳輸率可達50 MHz,數據存儲深度為256 B。
ARM嵌入式平臺移植了WinCE操作系統。WinCE操作系統在實時管理、圖形界面、開發環境等方面有著特有的優勢,這為便攜式電能質量分析儀的人機交互和網絡化擴展提供了便利。
評論