嵌入式系統中電源電壓的精確控制
概要
該項目的目標是設計一個高效電源系統,其輸出電壓(VOUT)可以數字調節。為了保證輸出電壓的精確性,采用數字閉環控制,用于修正失調、漂移和負載變化(最大至600mA)的影響。電路包括輸出可調的降壓型控制器、ADC與DAC、電壓基準以及一個微控制器(MCU)。
在大多數DC-DC轉換器中,位于FB引腳上的電阻網絡可以調整轉換器的輸出電壓(見圖1)。在本文電路中,利用DAC輸出電壓(VDAC)改變電阻網路的基準電壓,達到調整轉換器輸出(VOUT)的目的。ADC檢測輸出電壓,并將結果送入微處理器。微處理器調整DAC輸出,以控制系統輸出電壓達到預定值。為使電路盡可能簡單,預設輸出電壓通過PC的串行通信口(RS-232)送入微處理器。這個系統在一些需要精確控制供電電壓的嵌入式系統中非常有用。例如為ASIC、DSP或者MCU供電的電源,電源電壓對應于處理器的工作速率。將供電電壓調整到工作速率對應的最小電壓,可以降低處理器功耗。
電路所需器件和開發工具
系統的主電源選擇低靜態電流、輸出1.25V~5.5V可調的降壓型調節器MAX1692,它可以提供最大600mA的電流。MAX1692評估板提供了一個經過驗證的電路布局和推薦輸入電容、輸出電容和電感量。MAX1692反饋引腳電阻網絡的偏置由低功耗、12位DAC提供,MAX5302可以提供2.5mA的負載驅動。DAC基準電壓為2.5V。電壓調節器輸出電壓由低功耗、12位ADC(MAX1286)讀取, MAX1286能自動關斷,可以在轉換之間減少電源消耗。ADC基準由高精度5V電壓基準MAX6126 提供。ADC和DAC均采用SPI口通信。高精度電壓基準包括輸出檢測和地檢測引腳,將其連接到ADC的基準和地引腳。這樣可以保證ADC具有最高準度的基準電壓。
圖1 降壓轉換器調整VOUT使FB引腳的圖1降壓轉換器調整VOUT使FB引腳的
微處理器選擇高速的8051兼容微處理器DS89C420,使用32MHz晶體。該微處理器的絕大多數指令為單指令周期,可以運行在32MIPS。處理器可以由J1口在線編程(見圖3)。DS89C420/430/440/450系列用戶手冊介紹了如何通過PC串行通信口,利用微軟的超級終端(HyperTermina)下載固件。處理器固件用C編寫并可使用免費的Sourceforge Small Devices C編譯器(SDCC)編譯。
圖2 供電系統的模擬部分產生一路負載可達600mA、1.25V~5V可調的高準確度輸出電壓
圖3 供電系統的數字部分需要一個穩定的5V電源(與模擬部分共用),數字部分通過逐位控制的SPI接口與DAC、ADC通信。串行收發器(U8)從PC接收VOUT設定值,J1提供MCU的在線編程。
模擬電路設計
為計算電阻網絡中的R1、R2和R3 (見圖2),先假設流入FB引腳的電流(IFB)可以忽略(MAX1692規格表給出的最大值為50nA),設R2為49.9kΩ。FB引腳電壓為1.25V,電流I2為25mA,遠高于50nA,證明忽略IFB的決定是正確的。最后,計算R1和R2:
(1)
DAC輸出電壓(VDAC)為最大值2.5V時,降壓調節器的輸出(VOUT)應該為最小值1.25V。代入式1:
第一項為零,得到R3為50 kΩ。當VDAC 為最小值0V時, VOUT 應該為最大值5V。代入式1 :
得到R1值為75kΩ。
ADC采集VOUT并將其通過SPI接口傳送給MCU,形成閉環數字控制。
數字電路設計
DAC和ADC由逐位控制的SPI總線和MCU通信。MCU是主器件,而DAC和ADC是從器件。MCU的5個引腳分別作為SCLK、MOSI、MISO、CSADC(ADC片選)、CSDAC(DAC片選)。總線上的器件共用SCLK,為達到最高通信速度,使用32MHz的晶體供給MCU系統時鐘。MCU通過PC串口接收VOUT值。MAX3311是RS-232收發器,將RS-232電平轉為TTL/COMS電平。
布局考慮
使用寬的引線連接所有無源器件(旁路電容、補償電容、輸入電容、輸出電容和電感)與降壓轉換器。這些元件和FB引腳的電阻網絡應盡可能靠近降壓轉換器,以減小PCB引線電阻和噪聲干擾。降壓轉換器處需要大面積的覆銅,以降低IC在重負載下的工作溫度。可以參考MAX1692評估板。為保持信號完整性,必須盡可能將模擬信號線和數字信號線隔離開。將DAC和ADC靠近降壓器放置,用短線連接所有模擬信號。數字信號在另一方向連接到MCU。盡可能將電壓基準靠近ADC,提供電壓基準的電壓反饋線用較短的隔離線連接到ADC的REF 和GND引腳,以保證ADC的轉換精度。
必須確保MCU下方沒有高速信號線。同時,32MHz時鐘晶體盡可能靠近MCU的輸入引腳。如同所有PCB布線一樣,不允許存在90
評論