新聞中心

        EEPW首頁 > 電源與新能源 > 設計應用 > 設計開關電源轉換器中電容陣列的數學方法

        設計開關電源轉換器中電容陣列的數學方法

        作者: 時間:2013-03-13 來源:網絡 收藏

        圖4為輸出電容器的等效電路。

        圖4
        圖4

        在圖4中,C是等效純電容,R(SUB/)esr(/SUB)是等效串聯電阻。當輸出電容器在加載過程中放電時,輸出等效純電容上的電壓可通過對方程1積分得到:

        輸出電容器兩端的總電壓降為ESR兩端的電壓降和等效純電容上的電壓降的和,因而:

        方程3是一個二次方程,在局部極點(local pole)處出現極值。局部極點發生在:

        在方程4中,最大電壓降發生在t = tlp_d,其值為:

        如果tlp_d是負數,那么最大電壓降實際發生在t=0,因為在t>0區間是單調衰減的,因而,最大電壓降為:

        類似地,在卸載過程中輸出電容充上了電,通過對方程2進行積分可得到輸出電容器兩端在等效純電容上的電壓提升:

        輸出電容兩端的總的電壓提升為ESR兩端的電壓提升和等效純電容上電壓提升的和,因而:

        方程6是一個二次方程,在局部極點處出現極值。局部極點發生在:

        最大電壓提升發生在t = tlp_r,其值為:

        如果tlp_r是負數,那么最大電壓提升實際發生在t=0,因為在t>0區間方程是單調衰減函數,因而,最大電壓提升為:

        以圖像處理器單元(GPU)為例,我們使用12V的三芯鋰離子電池,通過降壓轉換器把該電壓轉換到1.5V來為GPU供電。在小功率和大功率模式,GPU的耗流量分別為0.5A和8.5A。保證GPU正常工作的電壓范圍為1.5V +/-75mV。假設降壓轉換器的電感值初選為2.2微亨,解耦電容為330微法并帶有4毫歐的ESR,那么:

        V(SUB/)in(/SUB) = 12 V,V(SUB/)in(/SUB)= 1.5 V,L = 2.2 μH,C = 330 μF,R(SUB/)esr(/SUB)= 5 mΩ,I(SUB/)1(/SUB)=0.5 A,I(SUB/)2(/SUB) = 8.5 A

        把上述參數代入方程4和方程7,在加載過程(負載電流從0.5A躍升到8.5A)中,輸出電容陣列上的最大電壓降發生在t=0.36微秒,其值為32.9mV。

        在卸載過程(負載電流從8.5A躍降到0.5A)中,輸出電容陣列的最大電壓提升發生在t=10.4微秒,其值為144.0mV。

        重復試算可得到滿足1.5V +/-75mV電壓要求的最優值:C=720微法,R(SUB/)esr(/SUB)=6.2微歐。

        陶瓷電容器ESR小但電容量也小,但陶瓷電容器的低ESR效應只在它保有能量期間(按C(dv/dt)=I計算)有效。電解電容器ESR大且電容量大,但電解電容器的大電容效應只表現在其諧振頻率內(按R(SUB/)esr(/SUB)C計算)。聚合物鉭電容器處于兩者之間——ESR相對較小,電容相對較大。

        用哪些器件來產生720微法電容和6.2毫歐ESR呢?可用兩個330微法30毫歐(ESR)聚合物鉭電容器和6個10微法2毫歐(ESR)陶瓷電容器構成一個電容器陣列。

        在電容器陣列中,應根據器件的諧振頻率遞減的次序來安排電容器與負載的相對位置。陶瓷電容諧振頻率最高,應最接近于負載,聚合物鉭電容其次,電解電容離負載最遠。

        從方程4和方程7可以看出,選用小電感更有利于減少電壓偏離。把電感從2.2微亨減小到1.2微亨將可把電容值從720微法削減到390微法。對降壓轉換器來說,電感值是一個重要參數,應綜合考慮效率優化、電感紋波電流和輸出電容陣列計算等因素。


        上一頁 1 2 下一頁

        關鍵詞:

        評論


        相關推薦

        技術專區

        關閉
        主站蜘蛛池模板: 鲁甸县| 托克逊县| 平乡县| 云安县| 遂平县| 平谷区| 讷河市| 沙坪坝区| 本溪市| 晋江市| 嘉荫县| 沁源县| 乌恰县| 茂名市| 本溪市| 富民县| 东乌珠穆沁旗| 嘉义县| 上蔡县| 丘北县| 临漳县| 鄄城县| 平昌县| 扎兰屯市| 措勤县| 左权县| 太仆寺旗| 盖州市| 平和县| 都昌县| 襄樊市| 鹤峰县| 沂南县| 渑池县| 凤台县| 拜泉县| 天水市| 勐海县| 宜丰县| 晋州市| 恩施市|