RF WCDMA基準比較測試白皮書
概覽
通過與傳統的儀器進行比較,了解軟件定義的PXI RF儀器在速度上的優勢。如WCDMA測量結果所示,基于多核處理器并行執行的LabVIEW測量算法與傳統儀器相比可以實現明顯的速度提升。
介紹
你在早晨7:00伴著搖滾音樂的聲音醒來,收音機鬧鐘里的RDS接收器提示你正在收聽來自Guns N’ Roses 樂隊的Welcome to the Jungle。然后,在你品嘗咖啡期時,可以在書房通過WLAN接收器來查收郵件。當準備好工作后,你走出家門,使用一個315MHz的FSK發射機來打開車鎖。坐到車里,駛上道路,你又可以享受無線電收音機所提供的沒有廣告的娛樂節目。稍后,你會通過藍牙耳機會與車內的3G手機建立連接。幾分鐘內,車載的GPS導航儀可以修正你當前的3D位置,并向你指示路徑。GPS接收機傳出的聲音提示你需要駛入收費公路,同時RFID接收器將自動收取相應的過路費。
RF技術無處不在。即便作為一個普通的消費者,每時每刻都會受其影響,更不要說一個RF測試工程師了。無線設備的成本大幅降低,可以讓業余的時間變得更輕松,但是在設計下一代RF自動測試系統時,將會帶來更多的挑戰。工程項目所面臨的降低測試成本的挑戰,比以往任何時候都嚴峻。因此,當前的自動測試系統所關注的焦點在于減少整體的測試時間。
最新發布的6.6GHz RF測試平臺
為了滿足這一需求,NI開發了6.6GHz高速RF測試平臺。所發布的新產品包括NI PXIe-5663矢量信號分析儀、NI PXIe-5673矢量信號發生器,可以為自動化RF測試提供高速、靈活的解決方案。NI PXIe-5663能夠以50 MHz的瞬時帶寬分析10 MHz 到 6.6 GHz信號。NI PXIe-5673能夠以100MHz的瞬時帶寬生成85 MHz 到6.6 GHz的信號。

6.6GHz RF測試平臺非常適于自動化測試應用。使用高度并行的NI LabVIEW測量算法,PXI模塊化儀器可實現顯著優于傳統儀器的測量速度。若要了解PXI模塊化儀器為何能夠實現比傳統儀器更快的測量速度,從二者的架構區別中即可找到原因。雖然二者使用類似的組件,但是區別在于PXI系統使用高性能的多核中央處理器(Central processing units, CPU)。圖2中展示了兩種類型儀器的系統框圖,即可看出這一區別。

雖然PXI和傳統儀器有許多共性,但是PXI模塊化儀器中用戶自定義的多核CPU可以實現更快的測量速度。在很多情況下,RF測量算法也是按照LabVIEW編程語言中所自有的并行方式編寫的。因此,可以通過將CPU升級至多核,從而實現總體的測量速度的提升。隨著CPU時鐘速率(或者CPU內核個數)按照摩爾定律提升,當前的RF測試儀器可以實現非常快的速度。如你在本文中所見,對于一些較為處理器密集型的RF測量算法,許多PXI矢量信號分析儀可以比傳統的臺式矢量信號分析儀的速度高出30倍。
為了更進一步了解PXI儀器的優勢,可以對一些高通量的無線測試應用進行分析。在這種情況下,測試時間在產品的成本(Cost of goods sold, COGS)中占有較大比重。而且,對于諸如3G UMTS (WCDMA)的無線通信協議來說,處理器密集型的算法將會占用較多的處理器資源。針對這一問題,作為National Instruments 系統聯盟商的AmFax公司提供了高度并行的測量算法,用于WCDMA物理層的測試。NI RF儀器以及合作伙伴的軟件,實現了一個低成本、高速度、而且高精度的測試平臺。
伺服電機相關文章:伺服電機工作原理
評論