博客專欄

        EEPW首頁 > 博客 > 英特爾:已獲得向華為供貨許可

        英特爾:已獲得向華為供貨許可

        發布人:芯電易 時間:2020-09-23 來源:工程師 發布文章

        據中國證券報報道,9月21日晚間,英特爾方面向中國證券報記者表示,已經獲得向華為供貨許可。此外,9月21日晚間,有供應鏈公司人士向該報記者表示,英特爾方面向該公司表示已經獲得向華為供貨許可,因此該供應鏈公司已在繼續推進華為筆記本項目。

        此外,英特爾公司全球副總裁、中國區總裁楊旭近日在一篇對公司內部發表的文章中寫到,科技產業界比以往任何時候更加需要凝聚在一起,通過互補性合作、協同創新,不斷輸出科技的價值、創造更多增值,攜手早日走出危機,共同迎來新發展。

        楊旭表示,今年的疫情加速了整個經濟的結構性調整。這是產業新格局的起點,年初,我提出了數據時代“智能×效應”。把握數字經濟的發展大趨勢、推動新基建,已成為產業界的共識。同時,我們一如既往,繼續投資中國,因為選擇中國就是選擇加速發展。

        相變材料開啟儲存芯片新天地

        存儲器是集成電路最重要的技術之一,是集成電路核心競爭力的重要體現。然而,我國作為IC產業最大的消費國,相較于國外三星、英特爾等大型半導體公司的存儲器技術與產品而言,我國存儲器的自給能力還相對較弱。在對存儲芯片材料的研發刻不容緩之際,相變存儲器走進了人們的視野。近日,《中國電子報》就相變材料發展問題,采訪了中國科學院上海微系統與信息技術研究所納米材料與器件實驗室主任宋志棠。

        “改變未來”的存儲技術

        近年來,集成電路技術的發展對存儲器芯片的功耗、壽命、尺寸、持久力等各項性能指標均提出了更高要求,世界各國科學家都在加緊攻關存儲材料研發。

        據悉,相變存儲器是一種高性能、非易失性存儲器,而相變材料基于硫屬化合物玻璃。此類化合物有一個很重要的特性,那就是當它們從一相移動到另一相時,可以改變它們的電阻。該材料的結晶相是低電阻相,而非晶相為高電阻相,通過施加或消除電流來完成相變。

        與基于NAND的傳統非易失性存儲器不同,相變存儲器設備可以實現幾乎無限數量的寫入。此外,相變存儲器的優勢還包括:訪問響應時間短、字節可尋址、隨機讀寫等。因此,相變存儲器也被稱為是能夠“改變未來”的存儲技術之一。與此同時,相變材料也成了存儲芯片材料研究的重中之重。

        2017年,中國科學院上海微系統與信息技術研究所納米材料與器件實驗室主任宋志棠博士帶領科研團隊,在新型相變存儲材料研究方面取得了重大突破,創新提出一種高速相變材料的設計思路,即以減小非晶相變薄膜內成核的隨機性來實現相變材料的高速晶化。

        宋志棠向《中國電子報》記者介紹,目前國際上通用的相變存儲材料是“鍺銻碲”(Ge-Sb-Te),并且已經有很多芯片制造公司在進行相關研究。例如,內存芯片制造商SK海力士公司在2018年已開始生產基于相變材料的3D交叉點存儲器,用于SCM的3D crosspoint 存儲單元,是由基于硫化物的相變材料制成的。

        此外,IBM 研究曾表明,通過使用基于相變存儲器的模擬芯片,機器學習能力可以加速1000倍。IBM公司也曾透露,IBM正在建立一個研究中心以開發新一代AI硬件,并挖掘相變存儲器在AI領域的應用潛力。

        創新提出穩定八面體

        儲存器在半導體產業中有著舉足輕重的地位。中國產業信息網數據顯示,2018年全球半導體市場規模為4780億美元,存儲器市場規模為1650億美元,占全球半導體市場規模的35%。存儲器產業如今形成了DRAM芯片、NADA Flash芯片、特殊存儲器三個相對獨立的市場。然而,隨著摩爾定律的延伸,技術需求也越來越高,傳統存儲芯片的弊端也逐漸開始顯現。

        “隨著芯片技術節點接近其物理極限,電容器中電子數量的減少,使DRAM存儲器更容易受到外部電荷的影響;Flash在工作時面臨嚴重的串擾問題,從而縮短其使用壽命;SRAM在信噪比和軟故障方面也存在問題。此外,當芯片制程小于28nm時,這些問題會變得更加嚴重。”宋志棠向《中國電子報》記者說道。

        此外,宋志棠還提到,以前的存儲技術,如DRAM和Flash存儲器與采用高介電常數(high-k)、金屬柵(MG)和翼結構的新型應用CMOS技術并不兼容。因此,全球范圍內都在對非易失性存儲技術進行研究和開發,使其能夠與新的CMOS技術兼容,且具有良好的可擴展性、三維集成能力、快速運算能力、低功耗和長壽命,而相變存儲器便是其中的一種。

        宋志棠表示,新型相變材料以穩定八面體作為成核中心來減小非晶成核的隨機性,并實現相變材料的高速晶化,這是在自主相變八面體基元與面心立方亞穩態理論的指導下,創新提出一種兩個八面體晶格與電子結構相匹配的研發思路。通過第一性理論計算與分子動力學模擬,從眾多過渡族元素中,優選出鈧(Sc)、銥(Y)作為摻雜元素,通過存儲單元存儲性能測試,尤其是對存儲單元高速擦寫的測試,發明了高速、低功耗、長壽命、高穩定性的“鈧銻碲”(Sc-Sb-Te)相變材料。利用0.13um CMOS工藝制備的Sc-Sb-Te基相變存儲器件實現了700皮秒的高速可逆寫擦操作,循環壽命大于107次。

        相比傳統Ge-Sb-Te基相變存儲器件,Sc-Sb-Te基相變存儲器件操作功耗降低了90%,且十年的數據保持力相當。通過進一步優化材料與微縮器件尺寸,Sc-Sb-Te基PCRAM綜合性能將會得到進一步提升。

        宋志棠認為,將Sc-Te穩定八面體作為成核生長核心是實現高速、低功耗的主要原因,而晶格與電子結構匹配是長壽命的主要原因。此外,穩定八面體抑制面心立方向六方(FCC-HEX)轉化也是實現高速、低功耗的原因之一。

        對變現材料的三點建議

        如今,半導體電子工業市場已經成為相變材料的主要應用領域之一。QY Research 數據表明,2018年,相變材料在半導體電子工業市場的市場份額為17.69%。2019年,相變材料的市場總值已達到54億元。預計2026年,相變材料的市場總值將增長到121億元,年增長率為12.2%。

        宋志棠認為,隨著儲存設備的應用越來越廣泛,相變存儲材料未來在半導體領域中的應用也將越來越多。然而,相變材料在半導體領域若想突破基礎創新的初級階段,需要盡快走出實驗室,將其運用到更多的產品中。

        “目前相變材料還處于創新初級階段,且可參照的東西也有限。然而,眾人拾柴火焰高,若希望相變材料能夠在半導體領域得到更廣泛的運用,還需要整個產業鏈對此多加關注,協同發展。產、學、研緊密結合,才能夠真正實現質的飛躍。”宋志棠說道。

        對于未來相變材料在半導體產業中的技術發展需求,宋志棠認為主要有三點:其一,高純度。半導體材料對于純度的要求是非常高的,因為原料純度低往往會直接影響器件的性能,所以所有的半導體材料都需要對原料進行提純。其二,高重復性。對于半導體這類高技術型產業,研發周期長且研發費用高昂,因此半導體材料需要有很高的重復利用性。其三,高可靠性以及穩定性。在半導體領域中,每一個步驟都十分關鍵,因此需要研究人員時刻保持嚴謹態度,否則很容易造成巨大損失。


        *博客內容為網友個人發布,僅代表博主個人觀點,如有侵權請聯系工作人員刪除。

        雙控開關相關文章:雙控開關原理
        三相異步電動機相關文章:三相異步電動機原理


        關鍵詞:

        相關推薦

        技術專區

        關閉
        主站蜘蛛池模板: 内江市| 南安市| 筠连县| 宁晋县| 甘肃省| 北票市| 天津市| 雷山县| 松原市| 舞阳县| 丹江口市| 河东区| 法库县| 青冈县| 绍兴县| 新沂市| 罗源县| 盐山县| 鹿泉市| 山东| 聂荣县| 湛江市| 鄂尔多斯市| 成武县| 磐石市| 林周县| 葵青区| 深水埗区| 万全县| 岑溪市| 武川县| 贵阳市| 柏乡县| 田东县| 泽州县| 永嘉县| 登封市| 浦北县| 册亨县| 六枝特区| 石家庄市|