關 閉

        新聞中心

        EEPW首頁 > 工控自動化 > 設計應用 > 基于多特征SVMs分類器的手語識別*

        基于多特征SVMs分類器的手語識別*

        作者:楊全 西安文理學院 計算機科學系 彭進業 西北大學 信息科學與技術學院 時間:2009-04-14 來源:電子產品世界 收藏

          

        本文引用地址:http://www.104case.com/article/93422.htm

          的主要思想是建立一個超平面作為決策曲面,使得正例和反例之間的隔離邊緣被最大化。對于二維線性可分情況,令 H為把兩類訓練樣本沒有錯誤地分開的分類線,H1,H2分別為過各類中離分類線最近的樣本且平行于分類線的直線,它們之間的距離叫做分類間隔。所謂最優分類線就是要求分類線不但能將兩類正確分開,而且使分類間隔最大。在高維空間,最優分類線就成為最優分類面[8,9]。

          設線性可分樣本集為(xi,yi)),i=1,2,…,n,x∈Rd,即x是d維特征向量,y∈{+1,-1}是類別標號,d維空間線性判斷函數的一般形式為g(x)=w×x+b,分類面方程為:w×x+b=0 (1)

          式中w為權向量,b為分類閾值。要求分類面對所有樣本正確分類,就是要求它滿足:

          Yi[w×xi+b]-1≥0,i=1,2,…,n (2)

          滿足上述條件且使||w||2最小的分類面就叫做最優分類面, H1,H2上的訓練樣本點,也就是使式(2)中等號成立的樣本點,稱作支持向量。解這個最優化問題后得到的最優分類函數是:

          在學習樣本是線性不可分,但卻是非線性可分的情況下,可以通過非線性變換把學習樣本變換到高維空間,使其在高維空間里是線性可分的。用 K(x,y)代替原來的點積(x·y),Mercer定理指出, K(x,y)通過與其相聯系的非線性變換Φ隱含地把特征向量映射到高維特征空間,使得學習樣本成為線性可分的。常用的有:



        評論


        技術專區

        關閉
        主站蜘蛛池模板: 平陆县| 米脂县| 博兴县| 凉山| 洛南县| 济源市| 砚山县| 海宁市| 锡林郭勒盟| 饶平县| 绵阳市| 慈利县| 淮安市| 巴林左旗| 富锦市| 徐水县| 富平县| 上犹县| 铁力市| 钦州市| 芮城县| 永春县| 穆棱市| 铜鼓县| 宁晋县| 濮阳县| 郴州市| 渭源县| 鄯善县| 东至县| 汝南县| 即墨市| 柯坪县| 突泉县| 香河县| 轮台县| 柳州市| 公安县| 临海市| 读书| 潮州市|