新聞中心

        EEPW首頁 > 電源與新能源 > 設計應用 > 基于一款小功率光伏并網逆變器控制的設計方案

        基于一款小功率光伏并網逆變器控制的設計方案

        作者: 時間:2015-06-21 來源:網絡 收藏

          引言

        本文引用地址:http://www.104case.com/article/276079.htm

          21世紀,人類將面臨著實現經濟和社會可持續發展的重大挑戰。在有限資源和保護環境的雙重制約下能源問題將更加突出,這主要體現在:①能源短缺;②環境污染;③溫室效應。因此,人類在解決能源問題,實現可持續發展時,只能依靠科技進步,大規模地開發利用可再生潔凈能源。太陽能具有儲量大、普遍存在、利用經濟、清潔環保等優點,因此太陽能的利用越來越受到人們的廣泛重視,成為理想的替代能源。文中闡述的功率為200W太陽能光伏并網,將太陽能電池板產生的直流電直接轉換為220V/50Hz的工頻正弦交流電輸出至電網。

          系統工作原理及其控制方案

          1光伏并網電路原理

          太陽能光伏并網的主電路原理圖如圖1所示。在本系統中,太陽能電池板輸出的額定電壓為62V的直流電,通過DC/DC變換器被轉換為400V直流電,接著經過DC/AC逆變后就得到220V/50Hz的交流電。系統保證并網逆變器輸出的220V/50Hz正弦電流與電網的相電壓同步。

          

         

          圖1電路原理框圖

          系統控制方案

          

         

          圖2主電路拓撲圖

          圖2為光伏并網逆變器的主電路拓撲圖,此系統由前級的DC/DC變換器和后級的DC/AC逆變器組成。DC/DC變換器的逆變電路可選擇的型式有半橋式、全橋式、推挽式。考慮到輸入電壓較低,如采用半橋式則開關管電流變大,而采用全橋式則控制復雜、開關管功耗增大,因此這里采用推挽式電路。DC/DC變換器由推挽逆變電路、高頻變壓器、整流電路和濾波電感構成,它將太陽能電池板輸出的62V的直流電壓轉換成400V的直流電壓。

          DC/AC逆變器的主電路采用全橋式結構,由4個MOS管(該管內部寄生了反并聯的二極管)構成,它將400V的直流電轉換成為220V/50Hz的工頻交流電。

          1、DC/DC變換器控制方案

          

         

          圖3 DC/DC變換器的控制框圖

          DC/DC變換器的控制框圖如圖3所示。控制電路是以集成電路SG3525為核心,由SG3525輸出的兩路50kHz的驅動信號,經門極驅動電路加在推挽電路開關管Q1和Q2的門極上。為保持DC/DC變換器輸出電壓的穩定,將檢測到的輸出電壓與指令電壓進行比較,該誤差電壓經PI調節器后控制SG3525輸出驅動信號的占空比。該控制電路還具有限制輸出過流過壓的保護功能。當檢測到DC/DC變換器輸出電流過大時,SG3525將減小門極脈沖的寬度,降低輸出電壓,進而降低了輸出電流。當輸出電壓過高時,會停止DC/DC變換器的工作。由于推挽式電路容易因直流偏磁導致變壓器飽和,因此,推挽式電路的設計難點在于如何防止變壓器的磁飽和。在本電路中,除了注意電路的對稱性之外,還設計了磁飽和檢測電路,當流經推挽電路的兩個支路電流失衡時,就會啟動SG3525的軟啟動功能,使DC/DC變換器重新啟動,變壓器得以復位。

          

         

          圖4偏磁檢測電路

          偏磁檢測電路如圖4所示。圖中只畫出了磁環的副邊。原邊兩個線圈接在主電路的變壓器原邊的兩個繞組上,流過兩個線圈中的電流方向要相反。當變壓器發生偏磁時,某一方向的電流異常大,通過電流互感器檢測,可在互感器的輸出電阻R1上產生一個電壓,如果該電壓足夠大,可以使穩壓二極管D5導通,在電位器上產生壓降,將電位器的值調到合適的阻值,使電位器上的壓降大于三極管的門限電壓,使三極管導通,接在芯片SG3525的腳8與地之間的電容放電,然后SG3525中的恒流源對它充電,SG3525重新啟動,從而使變壓器磁心復位。

          2、DC/AC逆變器控制方案

          

         

          圖5 DC/AC逆變器的控制框圖

          DC/AC逆變器是光伏并網的重點和難點,因此以下將著重闡述該部分。DC/AC逆變器控制框圖如圖5所示。核心控制芯片采用了TI公司的.盡管單片機也能實現并網逆變器的脈寬調制,但是DSP實時處理能力更強大,因此可以保證系統有更高的開關工作頻率。從圖5可以清楚看出系統輸入和輸出信號的情況。

          3、輸出功率優化控制方案

          在靜態情況下,當并網逆變器與太陽能電池相連時,并網逆變器可等效為太陽能電池的負載電阻。當光強λ和溫度T變化時,太陽能電池輸出的端電壓將會隨之發生變化。為了有效地利用太陽能,應使太陽能電池的輸出始終處于適當的工作點。因此,控制方案要求當太陽能電池的電壓升高時,可以增大它的輸出功率;反之就降低它的輸出功率。

          

         

          圖6 DSP的控制方案

          DSP的控制方案如圖6所示,參考電壓和太陽能電池的實際電壓相比較后,其誤差經過PI調節,將得到的電流指令(直流量)IREF與ROM里的正弦表值相乘,就得到交變的輸出電流指令iref,再將它與實際的輸出電流值比較后,其誤差經過比例(P)環節,將所得到的指令取反,與采集到的交流側電壓Us相加后,所得到的波形再與三角波比較,就產生4路PWM調制信號(三角波的頻率為20kHz)。

          4、交流側電壓Us的檢測

          將同步變壓器副邊的同步信號,濾波、整流,就可以得到比較穩定的直流電,將其送到DSP的A/D轉換口。由于最后得到的直流電壓與電網電壓有一個比較穩定的關系,因此,就比較容易換算Us的值了。

          

         

          圖7 Us的整流電路

          由于涉及到共地的問題,因此,采用了運算放大器的全波精密整流電路,如圖7所示。


        上一頁 1 2 下一頁

        關鍵詞: 逆變器 TMS320F240

        評論


        相關推薦

        技術專區

        關閉
        主站蜘蛛池模板: 信丰县| 平罗县| 尚志市| 靖宇县| 蚌埠市| 丰原市| 丽江市| 宣武区| 安丘市| 镇平县| 陇西县| 内丘县| 五台县| 临汾市| 平谷区| 天祝| 安塞县| 宁武县| 元朗区| 和林格尔县| 神农架林区| 上思县| 宿松县| 阜平县| 恭城| 资阳市| 乌拉特后旗| 财经| 隆安县| 宝应县| 中西区| 仁寿县| 怀仁县| 凌云县| 通渭县| 黔南| 蛟河市| 石台县| 石狮市| 岳阳市| 江川县|