新聞中心

        EEPW首頁 > 嵌入式系統 > 設計應用 > 內核中的互斥之我見

        內核中的互斥之我見

        作者: 時間:2006-12-12 來源:網絡 收藏

        /*e4gle:在我修改linux源代碼的過程中曾被大量的內核互斥現象所困擾,這需要利用內核鎖去解決,雖然最后大部分解決,但我覺得應該留下些什么,也沒時間寫了,偶爾看見這位兄弟的文章,覺得正是我想整理的,所以拿出來給大家分享,關于bottom_half和中斷的問題,在tcp/ip半底中絕對不能對文件讀寫操作,不然就panic,恰恰我在linux中的增強功能就有這個操作,使我郁悶了很久,歡迎大家討論
          */
          內核中的互斥之我見
          by wheelz

          看了前面各位的討論,我也有些想法,與大家商榷。
          需要澄清的是,互斥手段的選擇,不是根據臨界區的大小,而是根據臨界區的性質,以及 有哪些部分的代碼,即哪些內核執行路徑來爭奪。
          從嚴格意義上說,和spinlock_XXX屬于不同層次的互斥手段,前者的 實現有賴于后者,這有點象HTTP和TCP的關系,都是協議,但層次是不同的。
          先說,它是進程級的,用于多個進程之間對資源的互斥,雖然也是在 內核中,但是該內核執行路徑是以進程的身份,代表進程來爭奪資源的。如果 競爭不上,會有context switch,進程可以去sleep,但CPU不會停,會接著運行 其他的執行路徑。從概念上說,這和單CPU或多CPU沒有直接的關系,只是在 本身的實現上,為了保證semaphore結構存取的原子性,在多CPU中需要spinlock來互斥。
          在內核中,更多的是要保持內核各個執行路徑之間的數據訪問互斥,這是最基本的互斥問題,即保持數據修改的原子性。semaphore的實現,也要依賴這個。在單CPU中,主要是中斷和bottom_half的問題,因此,開關中斷就可以了。在多CPU中,又加上了其他CPU的干擾,因此需要spinlock來幫助。這兩個部分結合起來,就形成了spinlock_XXX。它的特點是,一旦CPU進入了spinlock_XXX,它就不會干別的,而是一直空轉,直到鎖定成功為止。因此,這就決定了被spinlock_XXX鎖住的臨界區不能停,更不能context switch,要存取完數據后趕快出來,以便其他的在空轉的執行路徑能夠獲得spinlock。這也是spinlock的原則所在。如果當前執行路徑一定要進行context switch,那就要在schedule()之前釋放spinlock,否則,容易死鎖。因為在中斷和bh中,沒有context,無法進行context switch,只能空轉等待spinlock,你context switch走了,誰知道猴年馬月才能回來。
          因為spinlock的原意和目的就是保證數據修改的原子性,因此也沒有理由在spinlock 鎖住的臨界區中停留。
          spinlock_XXX有很多形式,有
          spin_lock()/spin_unlock(),
          spin_lock_irq()/spin_unlock_irq(),
          spin_lock_irqsave/spin_unlock_irqrestore()
          spin_lock_bh()/spin_unlock_bh()
          local_irq_disable/local_irq_enable
          local_bh_disable/local_bh_enable
          那么,在什么情況下具體用哪個呢?這要看是在什么內核執行路徑中,以及要與哪些內核執行路徑相互斥。我們知道,內核中的執行路徑主要有:
          1 用戶進程的內核態,此時有進程context,主要是代表進程在執行系統調用 等。
          2 中斷或者異常或者自陷等,從概念上說,此時沒有進程context,不能進行
          context switch。
          3 bottom_half,從概念上說,此時也沒有進程context。
          4 同時,相同的執行路徑還可能在其他的CPU上運行。
          這樣,考慮這四個方面的因素,通過判斷我們要互斥的數據會被這四個因素中
          的哪幾個來存取,就可以決定具體使用哪種形式的spinlock。如果只要和其他CPU互斥,就要用spin_lock/spin_unlock,如果要和irq及其他CPU互斥,就要用
          spin_lock_irq/spin_unlock_irq,如果既要和irq及其他CPU互斥,又要保存EFLAG的狀態,就要用spin_lock_irqsave/spin_unlock_irqrestore,如果要和bh及其他CPU互斥,就要用spin_lock_bh/spin_unlock_bh,如果不需要和其他CPU互斥,只要和irq互斥,則用local_irq_disable/local_irq_enable,
          如果不需要和其他CPU互斥,只要和bh互斥,則用local_bh_disable/local_bh_enable,
          等等。值得指出的是,對同一個數據的互斥,在不同的內核執行路徑中,
          所用的形式有可能不同(見下面的例子)。
          舉一個例子。在中斷部分中有一個irq_desc_t類型的結構數組變量irq_desc[],
          該數組每個成員對應一個irq的描述結構,里面有該irq的響應函數等。
          在irq_desc_t結構中有一個spinlock,用來保證存取(修改)的互斥。
          對于具體一個irq成員,irq_desc[irq],對其存取的內核執行路徑有兩個,一是
          在設置該irq的響應函數時(setup_irq),這通常發生在module的初始化階段,或
          系統的初始化階段;二是在中斷響應函數中(do_IRQ)。代碼如下:
          int setup_irq(unsigned int irq, struct irqaction * new)
          {
          int shared = 0;
          unsigned long flags;
          struct irqaction *old, **p;
          irq_desc_t *desc = irq_desc + irq;
          /*
          * Some drivers like serial.c use request_irq() heavily,
          * so we have to be careful not to interfere with a
          * running system.
          */
          if (new->flags SA_SAMPLE_RANDOM) {
          /*
          * This function might sleep, we want to call it first,
          * outside of the atomic block.
          * Yes, this might clear the entropy pool if the wrong
          * driver is attempted to be loaded, without actually
          * installing a new handler, but is this really a problem,
          * only the sysadmin is able to do this.
          */
          rand_initialize_irq(irq);
          }
          /*
          * The following block of code has to be executed atomically
          */
          [1] spin_lock_irqsave(desc->lock,flags);
          p = desc->action;
          if ((old = *p) != NULL) {
          /* Can't share interrupts unless both agree to */
          if (!(old->flags new->flags SA_SHIRQ)) {
          [2] spin_unlock_irqrestore(desc->lock,flags);
          return -EBUSY;
          }
          /* add new interrupt at end of irq queue */
          do {
          p = old->next;
          old = *p;
          } while (old);
          shared = 1;
          }
          *p = new;
          if (!shared) {
          desc->depth = 0;
          desc->status = ~(IRQ_DISABLED | IRQ_AUTODETECT | IRQ_WAITING);
          desc->handler->startup(irq);
          }
          [3] spin_unlock_irqrestore(desc->lock,flags);
          register_irq_proc(irq);
          return 0;
          }
          asmlinkage unsigned int do_IRQ(struct pt_regs regs)
          {
          /*
          * We ack quickly, we don't want the irq controller
          * thinking we're snobs just because some other CPU has
          * disabled global interrupts (we have already done the
          * INT_ACK cycles, it's too late to try to pretend to the
          * controller that we aren't taking the interrupt).
          *
          * 0 return value means that this irq is already being
          * handled by some other CPU. (or is disabled)
          */
          int irq = regs.orig_eax 0xff; /* high bits used in ret_from_ code */
          int cpu = smp_processor_id();
          irq_desc_t *desc = irq_desc + irq;
          struct irqaction * action;
          unsigned int status;
          kstat.irqs[cpu][irq]++;
          [4] spin_lock(desc->lock);
          desc->handler->ack(irq);
          /*
          REPLAY is when Linux resends an IRQ that was dropped earlier
          WAITING is used by probe to mark irqs that are being tested
          */
          status = desc->status ~(IRQ_REPLAY | IRQ_WAITING);
          status |= IRQ_PENDING; /* we _want_ to handle it */
          /*
          * If the IRQ is disabled for whatever reason, we cannot
          * use the action we have.
          */
          action = NULL;
          if (!(status (IRQ_DISABLED | IRQ_INPROGRESS))) {
          action = desc->action;
          status = ~IRQ_PENDING; /* we commit to handling */
          status |= IRQ_INPROGRESS; /* we are handling it */
          }
          desc->status = status;
          /*
          * If there is no IRQ handler or it was disabled, exit early.
          Since we set PENDING, if another processor is handling
          a different instance of this same irq, the other processor
          will take care of it.
          */
          if (!action)
          goto out;
          /*
          * Edge triggered interrupts need to remember
          * pending events.
          * This applies to any hw interrupts that allow a second
          * instance of the same irq to arrive while we are in do_IRQ
          * or in the handler. But the code here only handles the _second_
          * instance of the irq, not the third or fourth. So it is mostly
          * useful for irq hardware that does not mask cleanly in an
          * SMP environment.
          */
          for (;;) {
          [5] spin_unlock(desc->lock);
          handle_IRQ_event(irq, ®s, action);
          [6] spin_lock(desc->lock)

        本文引用地址:http://www.104case.com/article/258258.htm


        關鍵詞: semaphore

        評論


        技術專區

        關閉
        主站蜘蛛池模板: 铜山县| 虞城县| 武穴市| 沾益县| 凤阳县| 南川市| 阳高县| 望谟县| 望奎县| 杨浦区| 桓台县| 舞阳县| 渝北区| 静乐县| 大庆市| 西丰县| 河津市| 怀安县| 大兴区| 屏东市| 射洪县| 永嘉县| 铁岭县| 武定县| 寿光市| 河西区| 岚皋县| 芜湖县| 西乡县| 汶上县| 南涧| 金乡县| 阿合奇县| 桓仁| 金华市| 宜昌市| 蒲城县| 阳高县| 如东县| 东山县| 怀化市|