新聞中心

        EEPW首頁 > 電源與新能源 > 設計應用 > 電子設計基礎:電阻電橋基礎(一)

        電子設計基礎:電阻電橋基礎(一)

        作者: 時間:2012-04-30 來源:網絡 收藏
        立式儀表放大器的能力范圍。

          失調電壓

          電橋和測量設備的失調電壓會將實際信號拉高或拉低。只要信號保持在有效測量范圍,對這些漂移的校準將很容易。如果電橋差分信號轉換為以地為參考的信號,電橋和放大器的失調很容易產生低于地電位的輸出。這種情況發生時,將會產生一個死點。在電橋輸出變為正信號并足以抵消系統的負失調電壓之前,ADC輸出保持在零電位。為了防止出現這種情況,電路內部必須提供一個正偏置。該偏置電壓保證即使電橋和設備出現負失調電壓時,輸出也在有效范圍內。偏置帶來的一個問題是降低了動態范圍。如果系統不能接受這一缺點,可能需要更高質量的元件或失調調節措施。失調調整可以通過機械電位器、數字電位器,或在ADC的GPIO外接電阻實現。

          失調漂移

          失調漂移和噪聲是電橋電路需要解決的重要問題。上述測壓單元中,電橋的滿幅輸出是2mV/V,要求精度是12位。如果測壓單元的供電電壓是5V,則滿幅輸出為10mV,測量精度必須是2.5micro;V或更高。簡而言之,一個只有2.5μV的失調漂移會引起12位轉換器的1 LSB誤差。對于傳統運放,實現這個指標存在很大的挑戰性。比如OP07,其最大失調TC為1.3μV/°C,最大長期漂移是每月1.5μV。為了維持電橋所需的低失調漂移,需要一些有效的失調調整。可以通過硬件、軟件或兩者結合實現調整。

          硬件失調調整:斬波穩定或自動歸零放大器是純粹的硬件方案,是集成在放大器內部的特殊電路,它會連續采樣并調整輸入,使輸入引腳間的電壓保持在最小差值。由于這些調整是連續的,所以隨時間和溫度變化產生的漂移成為校準電路的函數,并非放大器的實際漂移。MAX4238和MAX4239的典型失調漂移是10nV/°C和50nV/1000小時。

          軟件失調調整:零校準或皮重測量是軟件失調校準的例子。在電橋的某種狀態下,比如沒有載荷的情況,測量電橋的輸出,然后在測壓單元加入負荷,再次讀取數值。兩次讀數間的差值與激勵源有關,取兩次讀數的差值不僅消除了設備的失調,還消除了電橋的失調。這是個非常有效的測量方法,但只有當實際結果基于電橋輸出的變化時才可以使用。如果需要讀取電橋輸出的絕對值,這個方法將無法使用。

          硬件/軟件失調調整:在電路中加入一個雙刀模擬開關可以在應用中使用軟件校準。圖3中,開關用于斷開電橋一側與放大器的連接,并短路放大器的輸入。保留電橋的另一側與放大器輸入連接可以維持共模輸入電壓,由此消除由共模電壓變化引起的誤差。短路放大器輸入可以測量系統的失調,從隨后的讀數中減去系統失調,即可消除所有的設備失調。但這種方法不能消除電橋的失調。

          電子設計基礎:電阻電橋基礎(一)

          圖3. 增加一個開關實現軟件校準

          這種自動歸零校準已廣泛用于當前的ADC,對于消除ADC失調特別有效。但是,它不能消除電橋失調或電橋與ADC之間任何電路的失調。

          一種形式稍微復雜的失調校準電路是在電橋和電路之間增加一個雙刀雙擲開關(圖4)。將開關從A點切換至B點,將反向連接電橋與放大器的極性。如果將開關在A點時的ADC讀數減去開關在B點時的ADC讀數,結果將是2VoGain,此時沒有失調項。這種方法不僅可以消除電路的失調,還可以將信噪比提高兩倍。

          電子設計基礎:電阻電橋基礎(一)

          圖4. 增加一個雙刀、雙擲開關,增強軟件校準功能

          交流電橋激勵:這種方式不常使用,但在傳統設計中,交流激勵是在電路中消除直流失調誤差的常用、并且有效的方法。如果電橋由交流電壓驅動,電橋的輸出將是交流信號。這個信號經過電容耦合、放大、偏置電路等,最終信號的交流幅度與電路的任何直流失調無關。通過標準的交流測量技術可以得到交流信號的幅度。采用交流激勵時,通過減小電橋的共模電壓變化就可以完成測量,大大降低了電路對共模抑制的要求。

          噪聲

          如上所述,在處理小信號輸出的電橋時,噪聲是個很大的難題。另外,許多電橋應用的低頻特性意味著必須考慮“閃爍”或1/F噪聲。對噪聲的詳細討論超出了本文的范圍,而且目前已經有很多關于這個主題的文章。本文將主要列出設計中需要考慮的四個噪聲源抑制。

          將噪聲阻擋在系統之外(良好接地、屏蔽及布線技術)

          減少系統內部噪聲(結構、元件選擇和偏置電平)

          降低電噪聲(模擬濾波、共模抑制)

          軟件補償或DSP(利用多次測量提高有效信號、降低干擾信號)

          近幾年發展起來的高精度Σ-Δ轉換器很大程度上簡化了電橋信號數字化的工作。下面將介紹這些轉換器解決上述五個問題的有效措施。

          高精度Σ-Δ轉換器(ADC)

          目前,具有低噪聲PGA的24位和16位Σ-Δ ADC對于低速應用中的測量提供了一個完美的方案,解決了量化電橋模擬輸出時的主要問題(見上述討論,圖2及后續內容)。

          激勵電壓的變化,Ve緩沖基準電壓輸入簡化了比例系統的構建。得到一個跟隨Ve的基準電壓,只需一個電阻分壓器和噪聲濾波電容(見圖2)。比例系統中,輸出對Ve的微小變化不敏感,無需高精度的電壓基準。

          如果沒有采用比例系統,可以選擇多通道ADC。利用一個ADC通道測量電橋輸出,另一個輸入通道用來測量電橋的激勵電壓,利用式7可以校準Ve的變化。

          共模電壓

          如果電橋和ADC由同一電源供電,電橋輸出信號將會是偏置在1/2VDD的差分信號。這些輸入對于大部分高精度Σ-Δ轉換器來講都很理想。另外,由于它們極高的共模抑制(高于100dB),無需擔心較小的共模電壓變化。

          失調電壓

          當電壓精度在亞微伏級時,電橋輸出可以直接與ADC輸入對接。假定沒有熱耦合效應,唯一的失調誤差來源是ADC本身。為了降低失調誤差,大部分轉換器具有內部開關,利用開關可以在輸入端施加零電壓并進行測量。從后續的電橋測量數值中減去這個零電壓測量值,就可以消除ADC的失調。許多ADC可以自動完成這個歸零校準過程,否則,需要用戶控制ADC的失調校準。失調校準可以把失調誤差降低到ADC的噪底,小于1μVP-P。

          失調漂移

          對ADC進行連續地或頻繁地校準,使校準間隔中溫度不會有顯著改變,即可有效消除由于溫度變化或長期漂移產生的失調變化。需要注意的,失調讀數的變化可能等于ADC的噪聲峰值。如果目的是檢測電橋輸出在較短時間內的微小變化,最好關閉自動校準功能,因為這會減少一個噪聲源。

          噪聲

          處理噪聲有三種方法,比較顯著的方法是內部數字濾波器。這個濾波器可以消除高頻噪聲的影響,還可以抑制電源的低頻噪聲,電源抑制比的典型值可以達到100dB以上。降低噪聲的第二種方法依賴于高共模抑制比,典型值高于100dB。高共模抑制比可以減小電橋引線產生的噪聲,并降低電橋激勵電壓的噪聲影響。最后,連續的零校準能夠降低校準更新頻率以下的閃爍噪聲或1/F噪聲。

          實用的技巧

          將電橋的輸出與高精度的Σ-Δ ADC輸入直接相連并不能解決所有問題。有些應用中,需要在電橋輸出和ADC輸入之間加入匹配的信號調理器,信號調理器主要完成三項任務:放大、電平轉換以及差分到單端的轉換。性能優異的儀表放大器能夠完成所有三項功能,但價格可能很昂貴,并可能缺少對失調漂移的處理措施。下面電路可以提供有效的信號調理,其成本低于儀表放大器。

          單運算放大器

          如果只需要放大功能,圖5所示簡單電路即可滿足要求。該電路看起來似乎不是最好的選擇,因為它不對稱,并對電橋增加了負載。但是,對于電橋來說這一負荷并不存在問題(雖然不鼓勵這樣做)。許多電橋為低阻輸出,通常為350Ω。每路輸出電阻是它的一半或150Ω。增加電阻R1后,150Ω電阻只會輕微降低增益。當然,考慮150Ω電阻的容限和電阻的溫度系數(TCR),電阻R1和R2的TCR并不能精確地與之匹配。補償這個額外電阻的很簡單,只要選擇R1的阻值遠遠高于150Ω即可。圖5包括了一個用于零校準的開關。

          圖5. 連</span>
				<!--設計應用文章遮罩層BEGIN-->
            <div   class=



        關鍵詞: 電子設計 基礎 電阻電橋

        評論


        相關推薦

        技術專區

        關閉
        主站蜘蛛池模板: 吴忠市| 景谷| 武鸣县| 阳春市| 吴忠市| 涪陵区| 平谷区| 新乡县| 屏东县| 元氏县| 建水县| 凭祥市| 申扎县| 卢湾区| 方城县| 瑞丽市| 靖安县| 桓台县| 扎兰屯市| 柳林县| 疏附县| 瑞丽市| 凤山县| 松原市| 湟中县| 乳山市| 庆云县| 陈巴尔虎旗| 普兰店市| 崇信县| 平果县| 彭阳县| 松江区| 修武县| 黎平县| 尼玛县| 临清市| 涞源县| 大余县| 东乡族自治县| 长顺县|