如何對淺放電應用中磷酸鐵鋰(LiFePO4)電池使用的TI阻抗跟蹤電池電量計進行

1、 該參數在黃金影像 (golden image) 過程期間很重要。如果使用的是標準 4.2-V 鋰離子電池,且僅將其充電至 4.1V 系統電平,則在電池充電至 4.2V 以后進行首次 Qmax 更新仍然必要,目的是滿足 90%容量變化的要求。根據電量計設定的化學 ID 編碼,對規定電池容量即“設計容量”和估計 DOD 的容量變化進行開始和結束點檢查。
2、 計算 Qmax 時,寬范圍溫度變化會引起誤差。在高或低溫下正常工作的系統中,對該參數進行修改是必要的。
Qmax 更新事件
下列事件描述了實例 1 和 2 所述數據閃存參數改變以后,實現一次 Qmax 更新的一種實用方法。
1、電池電壓位于圖 2 所示低關聯誤差窗口內時應該開始一次 Qmax 更新。設計人員的自有算法可用于將電池放電/充電至這一范圍內。
2、本實例中,為了進入該有效測量范圍(化學 ID 為 404),所有電池電壓都必須大于或者等于 3309mV,且小于或者等于 3322mV。如果常規放電期間電池電壓恰好位于有效范圍以外,則在 18000 秒設定“OCV 等待時間”以前必須開始另一個放電或者充電周期。如果 6 小時 10 分鐘以后,所有電池電壓均在 3309 到 3322mV 范圍內,則進行了一次正確的 OCV 測量。
3、下一步是對電池完全放電。一旦電池充滿(即 100% SOC),其在進行第二次OCV 測量以前應該再休息 6 小時 10 分鐘。之后,Qmax 值被更新。如果充電進行了約 2 小時,則超時期間至少需要 8 小時。由實例 2 中 16.5 小時超時期間的計算,我們知道時間綽綽有余,額外多出 8.5 小時的緩沖時間。
4、電量計處在開啟模式下時向電量計發布一條 ResetCommand (0x41),可以重置 OCV 計時器。
表 3 顯示了使用舉例電池組配置時如描述的那樣循環操作電池所得到的結果。
表 3 全周期和淺充電 Qmax 更新的結果

1從耗盡充電到充滿
結論
TI 的阻抗跟蹤技術是一種非常精確的算法,用于通過電池使用時間來確定電池SOC。在一些磷酸鐵鋰電池應用中,利用一段時間的閑置來對電池進行完全放電是不可能的,因此研究一種 Qmax 更新的淺放電方法是必要的。本文介紹了實現一次淺放電 Qmax 更新需要考慮的因素和數據閃存編程配置。對這些參數的修改,必須由 TI 應用人員根據系統配置和要求批準之后才能進行。
評論