新聞中心

        EEPW首頁 > 光電顯示 > 設計應用 > 構建用于驅動長串LED的112.5W boost LED驅動方案

        構建用于驅動長串LED的112.5W boost LED驅動方案

        作者: 時間:2012-10-19 來源:網絡 收藏

        本參考設計用于為長串提供高壓boost電流源,長串的應用不僅限于路燈和停車場照明。長串允許采用高性價比的LED驅動方案,另外,由于各個LED具有相同電流,可以很好地控制亮度變化。本設計采用24V輸入,可提供高達75V的LED驅動輸出,可驅動1.5A LED燈串(或多串并聯)。測量到的輸入功率為115.49W,輸出功率為111.6W,具有96.6%的效率。

        圖2. LED驅動器原理圖

        圖3. LED驅動器布局

        PCB

        MAX16834 boost設計的印制電路板(PCB)采用通用的兩層板(圖1和圖3)。有些PCB功能要求為可選項,測試時并沒有組裝這些電路,原理圖(圖2)中將其標注為“no-pop”。電路板在IC下方布設接地島,通過單點連接至功率地,以確保低噪聲特性。由于很多路燈生產廠商沒有適當焊接設備焊接其它形式的封裝,例如TQFN封裝,因此本設計采用了TSSOP封裝IC。圖4給出本設計的材料清單。

        圖4. 材料清單

        圖5. 設計表格提供了MOSFET和電感的峰值電流和RMS電流。

        拓撲

        設計采用工作在200kHz連續模式的boost調節器。圖5所示表格給出了MOSFET和電感的RMS電流和峰值電流。連續模式設計能夠保持較小的MOSFET電流和電感電流。然而,由于MOSFET (Q1)導通期間電流流過輸出二極管(D2),輸出二極管的反向恢復損耗較大,并可能導致更大的關斷噪聲。從圖6電路波形可以看出,占空比為69%時,MOSFET的導通時間大約為3.4μs,關斷時間大約為1.5μs。一旦MOSFET關斷,漏極電壓將上升到輸出電壓與肖特基二極管壓降之和。

        圖7. 輸出電壓(交流耦合)和開關MOSFET檢流電阻的電壓

        MOSFET驅動

        由于采用連續模式設計,MOSFET和電感峰值電流低于工作在非連續模式下的數值。但是,由于在導通和關斷期間都有電流流過MOSFET,MOSFET在兩次轉換期間存在較大的開關損耗。MAX16834以足夠強的驅動能力使MOSFET在5ns內完全導通,在10ns內完全關斷(圖8和圖9),保持較低的溫升。如果設計中存在EMI問題,則改變MOSFET柵極的串聯電阻R5,以調整開關時間。如果這一變化引起功耗過大,可以增加另一個MOSFET Q2,與Q1并聯,以降低溫升。

        圖9. 漏極電壓下降時間

        輸出電容

        驅動器的輸入和輸出電容可以采用陶瓷電容。陶瓷電容具有更小尺寸,工作更可靠,但容值有限,尤其是在設計中要求200V的額定電壓。圖5中,設計表格顯示驅動器需要一個5.4μF電容以滿足輸出紋波電壓的要求;為降低成本和空間,本電路采用4個1.2μF電容(共4.8μF)。輸出電壓開關紋波為2.88V (圖10和圖11),紋波電流為182mA,是輸出電流的12%,略大于10%目標參數,但仍然能夠滿足要求。

        圖11. LED電壓(交流耦合)和MOSFET檢流電壓

        調光

        MAX16834提供很好的調光。當PWMDIM (第12引腳)為低電平時,將發生三個動作:第一,開關MOSFET Q1的柵極驅動(NDRV,第15引腳)變為低電平,避免額外的能量傳送到LED串;第二,調光MOSFET Q4的柵極驅動(DIMOUT,第20引腳)變為低電平,降低LED串電流并保持輸出電容電壓固定;最后,為保持補償電容處于穩態電壓,COMP (第5引腳)變為高阻態,以確保IC在PWMDIM返回高電平時立即以正確的占空比啟動。每個動作都允許極短的PWM導通時間,因此可提供較高的調光比。

        縮短導通時間主要受限于電感的充電時間,參見圖12和圖13,可以看到電流能夠很好地跟隨DIM脈沖。在電流脈沖的起始位置有衰減,主要是由于電感電流的爬升(大約12μs或2–3個開關周期)。觀察波形,可以看出需要大約40μs至50μs的時間電壓才能完全恢復并建立。如果DIM導通脈沖小于50μs,輸出電壓將在下個關斷脈沖的起始處沒有足夠的時間。在提高DIM占空比之前,將一直持續這種現象。因此,滿載(1.5A)時,DIM導通脈沖不應低于50μs。這意味著100Hz DIM頻率下,調光比為200:1。降低最小導通脈沖的唯一途徑是提高輸出電容,這將提高系統的成本,而且在通用照明中并不需要。如果降低LED電流,最小導通時間可隨之降低,調光比增大。陶瓷電容表現為壓電效應,調光期間會出現一定的音頻噪聲。不過,通過適當電路板布局,可以最大程度地降低噪聲。

        圖13. 大約50μs的調光脈沖

        OVP

        圖14中,LED串開路,MAX16834的過壓保護(OVP)電路在重新啟動之前將首先關斷驅動器400ms。因為輸出電容較小,電感儲能可能產生的過沖,因此采用了107V峰值電壓設置(高于83V設計值)。

        電路調整及其它輸入、輸出

        R15是線性數字電位器,可以在0A至1.7A之間任意調節LED電流。MAX16834具有一個輸入(SYNC),用于同步控制器的開關頻率。UVEN輸入允許外部控制驅動器(通/斷)。REFIN輸入端的低阻信號源可以優先于電位器設置,控制驅動器電流。例如,微控制器經過緩沖的DAC可以通過REFIN直接控制LED電流。出現故障(例如OVP)時,FLT#輸出低電平。一旦解除故障,信號變為高電平,該信號并不閉鎖。

        溫升

        測量效率為96.63% (VIN = 24.01V、I_IN = 1.49A、PIN = 115.49W、VLED = 74.9V、I_LED = 1.49A、POUT = 111.60W)。由于電路的頻率較高,驅動器元件并不發熱。溫度最高的元件為調光MOSFET Q4,溫升大約41°C。這一溫升是由于小尺寸PCB布局造成的,可以通過增大漏極附近的覆銅面積改善。電感尺寸較大,具有23°C的溫升,高于預期的7°C (圖15)。電感似乎吸收了部分MOSFET熱量,因為它們共用大面積覆銅焊盤。

        溫度測量

        以下溫度是在實際LED負載測試中得到的:

        VIN:24VDC

        Ambient:16°CΔT

        L1:39°C23°C

        D1:51°C35°C

        Q1:51°C35°C

        Q3:57°C41°C

        IC:33°C17°C

        上電步驟

        在LED+和LED-之間連接最多20只串聯LED,同時串聯安培表以測量電流(注:如果LED的正向導通電壓完全匹配并且/或者增加串聯均衡電阻,可以采用并聯架構)。

        在VIN和GND之間連接24V、6A電源。

        在連接器J2插入短路器。

        打開24V電源。

        調節R15將電流設置為0至1.5A。

        如果需要調光,則在DIM IN和GND之間連接PWM信號(0V至3.3V)。

        按照上述內容調節PWM占空比,實現調光。

        圖14. LED串開路OVP


        上一頁 1 2 下一頁

        關鍵詞: 驅動長串 LED 驅動方案

        評論


        相關推薦

        技術專區

        關閉
        主站蜘蛛池模板: 顺平县| 府谷县| 晋宁县| 赤壁市| 南通市| 龙门县| 安吉县| 同仁县| 北川| 崇明县| 海宁市| 慈溪市| 孟村| 丰宁| 始兴县| 宁德市| 左云县| 永年县| 大理市| 富平县| 诏安县| 怀来县| 来安县| 博白县| 家居| 龙南县| 尼玛县| 岢岚县| 巩义市| 扶风县| 文安县| 霍山县| 雅安市| 庆城县| 乌兰浩特市| 六枝特区| 南宫市| 新竹市| 海晏县| 霸州市| 黄陵县|