將降壓調節器轉換為智能可調光LED驅動器設計

圖9.RSENSE的建議PCB走線路徑除調節之外的功能
使用現成的降壓穩壓器調節LED電流非常簡單。此處的示例采用了ADP2384。更加詳盡的論文還包括使用 ADP2441的示例,該器件的引腳較少,具有36 V輸入電壓范圍。該文顯示了一些示例,展示如何實施專用LED降壓穩壓器提供的很多“智能”功能,例如LED短路/開路故障保護、RSENSE開路/短路故障保護、PWM調光、模擬調光和電流折返熱保護。我們在本文中將使用上例中的ADP2384,討論PWM和模擬調光、電流折返。
使用PWM和模擬控制進行調光
“智能”LED驅動器的一個關鍵要求是使用 調光制來調節LED亮度,采用以下兩種方法之一:PWM和模擬。PWM調光通過調節脈沖占空比來控制LED電流。如果頻率高于120 Hz,人眼會均衡這些脈沖,以產生可感知的平均光度。模擬調光可在恒定直流值下調節LED電流。
可通過打開和關閉與RSENSE串聯插入的NMOS開關,實施 PWM調光。這些電流水平可能需要功率器件,但添加功率器件會抵消通過使用包含自身電源開關的降壓穩壓器獲得的大小和成本益處。或者,可以通過快速打開和關閉穩壓器來執行PWM調光。在低PWM頻率下(1 kHz),這樣仍然可以提供良好的精度(圖10)。
圖10. ADP2384 PWM調光線性度—200 Hz下的輸出電流與占空比
與所有通用降壓穩壓器相同,ADP2384沒有針腳來應用PWM調光輸入,但可以操控FB引腳以啟用和禁用開關。如果FB變為高電平,則誤差放大器變為低電平,降壓開關停止。如果FB重新連接到RSENSE則它將恢復正常調節。這可以通過低電流NMOS晶體管或通用二極管實現。在圖11中,高PWM信號將 RSENSE連接到FB,實現LED調節。低PWM信號關閉NMOS,有一個上拉電阻將FB電平變為高電平。
圖12. 模擬調光電路
雖然PWM調光非常流行,但有時我們需要無噪聲的“模擬”調光。模擬調光只是調節恒定LED電流,而PWM調光則進行斬波。如果使用兩個調光輸入,則需要模擬調光,因為多個PWM調光信號可能產生拍頻,導致閃爍或聲頻噪聲。但是,可將PWM用于一個調光控制,而將模擬用于另一個調光控制。使用通用降壓穩壓器,實施模擬調光的最簡單方法是通過調節FB基準電路的電源,控制FB基準,如圖12所示。
熱折返
由于LED的使用壽命在很大程度上取決于其工作結溫,有時必須監控LED溫度,如果溫度過高,必須做出響應。導致異常高溫的原因可能是散熱器連接不當、周邊溫度過熱或其他一些極端條件。常見解決方案是在當溫度超過某個閾值時減小LED電流(圖13)。這稱為LED 熱折返。
圖13. 需要的LED熱折返曲線
在這種類型的調光中,LED保持在滿載電流,直至到達溫度閾值(T1),在這個閾值之上,LED電流隨溫度升高開始降低。這樣可以限制LED的結溫,保持它們的使用壽命。低成本NTC(負溫度系數)電阻通常用于測量LED的散熱器溫度。通過對模擬調光方案進行細微修改,NTC的溫度可以輕松控制LED電流。如果SS/TRK引腳用于控制FB基準,則可以使用一種簡單方法,將NTC與基準電壓并聯放置(圖14)。
評論