新聞中心

        EEPW首頁 > 模擬技術(shù) > 設(shè)計(jì)應(yīng)用 > 一階電路的零狀態(tài)響應(yīng)

        一階電路的零狀態(tài)響應(yīng)

        作者: 時(shí)間:2011-07-17 來源:網(wǎng)絡(luò) 收藏
        一階電路的零狀態(tài)響應(yīng)

        當(dāng)所有的儲(chǔ)能元件均沒有初始儲(chǔ)能,電路處于零初始狀態(tài)情況下,外加激勵(lì)在電路中產(chǎn)生的響應(yīng)稱為零狀態(tài)響應(yīng)。

        下面分別討論激勵(lì)為直流、正弦交流情況下,電路的零狀態(tài)響應(yīng)。

        一、直流激勵(lì)下的零狀態(tài)響應(yīng)。

        1、串聯(lián)電路

        如圖8-5-1所示,開關(guān)S原置于位置2,電路已達(dá)穩(wěn)態(tài),即,電容上無初始儲(chǔ)能。在時(shí)刻,開關(guān)S由2切換至1,電路接通直流電壓源,求換路后的零狀態(tài)響應(yīng)

        圖8-5-1

        當(dāng),開關(guān)S切換至1,由得:

        (式8-5-1)

        這是一個(gè)一階線性常系數(shù)非齊次微分方程。由微分方程求解的知識(shí)得,特解:

        齊次方程的通解:

        全解為:

        (式8-5-2)

        根據(jù)換路定則:

        由(式8-5-2):

        因此:

        最終求得:

        (式8-5-3)

        (式8-5-4)

        (式8-5-5)

        根據(jù)(式8-5-3)—(式8-5-5),畫出零狀態(tài)響應(yīng)隨時(shí)間變化的曲線,如圖8-5-2所示。

        圖8-5-2

        在圖8-5-1所示電路中,當(dāng)后,電壓源對電容充電。電容從初始電壓為零逐漸增大,最終充電至穩(wěn)態(tài)電壓,而電流則從初始值逐漸減小,最終衰減至穩(wěn)態(tài)值零。

        2、串聯(lián)電路。

        如圖8-5-3所示,開關(guān)S置于位置2,電路已達(dá)穩(wěn)態(tài),即,電感L上無初始儲(chǔ)能。在時(shí)刻,開關(guān)S由2切換至1,電路接通直流電壓源,求換路后的零狀態(tài)響應(yīng)

        圖8-5-3

        當(dāng)后,開關(guān)S切換至1,由得:

        (式8-5-6)

        (式8-5-6)是一個(gè)一階線性常系數(shù)非齊次微分方程。該方程的全解是特解和齊次方程的通解之和,即:

        (式8-5-7)

        表示全解,表示特解,表示通解。換路后電路達(dá)到新的穩(wěn)定狀態(tài)的穩(wěn)態(tài)電流就是特解,即:

        (式8-5-8)

        其通解為:

        (式8-5-9)

        于是,全解為:

        (式8-5-10)

        (式8-5-10)中的積分常數(shù)A由初始條件確定。在時(shí)刻,根據(jù)換路定則:

        由(式8-5-10):

        因此:

        最終得到:

        (式8-5-11)

        (式8-5-12)

        (式8-5-13)

        顯然,,滿足。圖8-5-4繪出了零狀態(tài)響應(yīng)的曲線。

        圖8-5-4

        二、正弦交流激勵(lì)下的零狀態(tài)響應(yīng)

        1、串聯(lián)電路

        仍以圖8-5-1所示電路為例,將直流電壓源改為正弦交流電壓源,當(dāng)后,由得到電路的微分方程為:

        (式8-5-14)

        的全解等于特解和通解之和,即:

        由于激勵(lì)是正弦交流激勵(lì),即為穩(wěn)態(tài)分量,即為暫態(tài)分量。穩(wěn)態(tài)分量可利用相量計(jì)算:

        式中 :

        暫態(tài)分量仍為,于是全解為:

        (式8-5-15)

        當(dāng)時(shí)刻,根據(jù)換路定則,確定積分常數(shù):

        由(式8-5-15):

        最終得到:

        (式8-5-16)

        (式8-5-17)

        (式8-5-18)

        (式8-5-16)~(式8-5-18)說明電源的初相角對暫態(tài)分量的大小有影響,通常稱為接通角。當(dāng)時(shí),電容電壓的暫態(tài)分量為最大。從(式8-5-16)不難看出,電容過渡電壓的最大值無論如何不會(huì)超過穩(wěn)態(tài)電壓幅值的兩倍。但是從(式8-5-17)可以看出,在某些情況下,過渡電流的最大值將大大超過穩(wěn)態(tài)電流的幅值

        2、RL串聯(lián)電路

        仍以圖8-5-3所示電路為例,將直流電壓源改為正弦交流電壓源,當(dāng)后,由KVL得到電路的微分方程為:

        (式8-5-19)

        初始條件仍是。如前所述,非齊次微分方程的全解是特解與通解之和,即:

        (式8-5-19)右邊是正弦函數(shù),特解也是正弦函數(shù),特解就是正弦交流激勵(lì)下的穩(wěn)態(tài)電流,可用相量求解:

        式中:

        (式8-5-20)

        暫態(tài)電流仍為:

        (式8-5-21)

        于是全解為:

        (式8-5-22)

        根據(jù)換路定則:

        由(式8-5-22):

        因而:

        最終得到:

        (式8-5-23)

        (式8-5-24)

        (式8-5-25)



        評論


        相關(guān)推薦

        技術(shù)專區(qū)

        關(guān)閉
        主站蜘蛛池模板: 洱源县| 历史| 于都县| 澎湖县| 清河县| 贺州市| 林甸县| 苍梧县| 比如县| 宣武区| 左贡县| 隆安县| 陆丰市| 湘潭县| 马关县| 咸宁市| 莱阳市| 罗源县| 磴口县| 北辰区| 新营市| 清丰县| 阿拉善左旗| 九台市| 格尔木市| 同仁县| 南阳市| 四子王旗| 西充县| 临猗县| 广水市| 文安县| 竹溪县| 扶绥县| 孟连| 永和县| 浦江县| 武陟县| 安义县| 宜黄县| 和林格尔县|