WSN的應用及其標準發展
每個無線傳感器都被看作一個節點,擁有無線通信能力,同時還具有一定的信號處理與網絡數據的智能。根據應用的類型,每個節點都可以有一個指定的地址。圖2顯示了某個節點的通用結構圖。它一般會包括一個傳感裝置、一個數據處理微控制器,以及一個無線連接RF模塊。根據不同的網絡定義,RF模塊可以起到一個簡單發射器或者收發器 (TX/RX)的作用。進行節點設計時,注意電流消耗和處理能力非常的重要。微控制器的內存非常依賴于所使用的軟件棧。
圖2 一個WSN節點的通用結構圖
圖3顯示了家庭環境中應用的一個WSN。在這種網絡中,我們可以觀察到不同類型的傳感器,例如,運動檢測器、散熱器、溫度監控,等等。
2.1 WSN針對4種主要目標
(1) 讀取給定位置的一些參數值,并將其發送給主處理中心。在農業應用環境中,例如,前面介紹的牛群等,讀取每頭牛的體溫可幫助確定哪一頭牛需要更密切的監控。
(2) 監控某些事件的發生,例如,在醫療應用中,對血壓和脈搏以及心律峰值進行監控。
(3) 對具體物體的運動進行跟蹤,廣泛應用于軍事領域中,以跟蹤敵方車輛。
(4) 幫助分類探測對象,特別是在交通控制應用環境中。
2.2 WSN中使用的兩種主要拓撲結構
A) 星狀網絡:如圖4所示,星狀網絡由一個點對多點無線連接組成,其一臺單主機以雙向或者單向方式連接至幾個節點。如果低功耗和低軟件開銷為關鍵參數,則這種拓撲結構非常值得關注。其存在的局限性是有效通信距離,因為每個節點都要在主機通信距離范圍以內。有幾種標準可以用于實現這種拓撲結構。藍牙、IEEE 802.15.4或者專有系統為使用最為廣泛的一些標準。注意,由于一些藍牙協議的局限性,藍牙平臺并未獲得廣泛的接受。
圖4 WSN 應用的星形網絡拓撲結構
B) 網狀網絡:在網狀網絡拓撲結構中,如圖5所示,節點與許多冗余互連連接在一起。如果某個節點故障,有許多其他方法讓兩個節點進行通信。這種拓撲具有較好的可靠性,但在電流消耗和軟件開銷方面付出代價非常大。這種拓撲結構可以通過所有權或者Zigbee標準來實現。

評論