了解地震信號檢測網絡的基礎知識
逆濾波器
本文引用地址:http://www.104case.com/article/202003/411186.htm在低于諧振頻率的頻率上,逆濾波器會補償地震檢波器的滾降。通過級聯諧振頻率的反相高通濾波器和截止頻率為所需降低值的低通濾波器,可以構建逆濾波器。圖5顯示了逆濾波器的響應以及應用時得到的轉換函數。此方法有很多缺點,使得總體結果的信噪比(SNR)較低。粉紅噪聲會被逆濾波器放大,而且其低頻熱穩定性很差。
圖5.逆濾波器轉換函數的頻率響應及其對仿真4.5 Hz地震檢波器頻率響應的影響
正反饋
正反饋是將外部電流饋入地震檢波器線圈來實現的,電流會產生一個力作用在懸吊質量塊上。此外部電流信號是通過正反饋濾波器(例如積分濾波器)從地震檢波器的輸出信號中導出的,它會放大低頻懸吊質量塊的運動。在實際情況中,正反饋濾波器的設計很難保持穩定。
負反饋
與正反饋相反,負反饋會減弱內部懸吊質量塊的運動。一種方法是通過降低阻尼電阻來使流過地震檢波器線圈的電流過阻尼。但是,這會受到線圈電阻的物理限制。為將阻尼電阻減小到顯著低于線圈電阻的值,應添加一個負電阻。負電阻可以通過負阻抗轉換器(NIC)等有源器件來實現。這可以通過使用運算放大器(運放)來實現,如圖6所示。可以添加帶通濾波器和高增益濾波器來對頻率響應進行整形并使之穩定。
圖6.使用運算放大器的負阻抗轉換器的基本架構
MEMS加速度計
MEMS加速度計是采用單個IC器件封裝的運動傳感器。典型結構是使用一對電容和一個微小的硅質量塊,中間有金屬板19。非常薄的硅區域將質量塊懸吊在中間。質量塊位置的變化會導致器件電容發生變化,進而轉換為與懸吊質量塊的加速度成比例的電壓信號。MEMS器件需要電源才能工作,某些MEMS加速度計內置數字化儀,可消除不必要的噪聲,而且無需匹配傳感器和記錄器。如圖6所示,MEMS加速度計的頻率響應就像一個截止頻率為諧振頻率的低通濾波器。
圖7.MEMS加速度計(ADXL354)在X軸上的頻率響應20
由于失調漂移,MEMS加速度計在諧振頻率以下的較高頻率時表現更好21。相反,地震檢波器由于其機械結構,在較低頻率(但仍高于諧振頻率)時表現更好。可以實現一個小型低成本的地震儀,以同時利用地震檢波器和MEMS加速度計來獲得更高的器件帶寬。當與適當的傳感器轉換函數進行卷積運算時,地震檢波器和MEMS加速度計的傳感器輸出可以轉換為不同的地動參數。論文“地震檢測:使用實驗室和現場數據比較地震檢波器與加速度計”,基于每種傳感器的常見轉換函數,討論了針對相同地震動位移Ricker子波的地震檢波器和MEMS加速度計傳感器輸出21。
地震傳感器儀器指南
為了提供可重復性和一致性,并支持采用地震儀陣列或地震傳感器網絡進行地震信號分析,需要對所用的儀器制定一套標準和規范。USGS已為其要部署在國家先進地震系統(ANSS)中的儀器設定了標準22。本部分根據USGS提到的經驗和技術趨勢,討論廣泛應用實現期望器件性能所需的不同規格。
數據采集系統(DAS)標準
USGS將現代地震儀歸類為數據采集系統。與傳統地震儀相比,標準DAS包括地震傳感器、數據采集單元以及外設和通信硬件。根據設備性能可將其分為A、B、C、D四類儀器。A類儀器接近最先進的地震儀,而D類儀器可與傳統地震儀相媲美。有關規格的詳細討論,請參見《儀器指南》22。
儀器帶寬
對于測量速度和加速度的地震傳感器,其額定帶寬和頻率響應是不同的。儀器等級越高,其帶寬越寬,頻率響應越好。寬帶傳感器全都是 A 類儀器,帶寬至少為0.01 Hz至50 Hz。在0.033 Hz至50 Hz的頻率范圍內,其對速度的頻率響應是平坦的。22
短周期 A 類傳感器具有 0.2 Hz — 50 Hz 的低帶寬。只有在1 Hz至35 Hz的頻率范圍內,其對速度的頻率響應才是平坦的22。
A 類加速度計在 0.02 Hz — 50 Hz 范圍內具有平坦的頻率響應,而B類加速度計僅在0.1 Hz至35 Hz范圍內具有平坦的頻率響應。22
強震動、弱震動和寬帶傳感器
DAS使用的傳感器按其捕獲的地震信號的幅度和頻率范圍進行分類。強震動傳感器可測量大幅度地震信號,通常是加速度計。強震動加速度計可測量高達3.5 g的加速度,而且系統噪聲水平低于1μg/√Hz22。
弱震動傳感器可測量幅度非常低的地震信號,噪聲水平低于1 ng/√Hz22。然而,寬帶傳感器已經能夠測量低幅度的地震信號,因此很少使用弱震動傳感器。
傳感器動態范圍和削波電平
寬帶速度傳感器的靈敏度為1500 Vs/m。當最大輸出電壓為±20 V時,輸出削波電平或最大可測速度為±0.013 m/s。22
在較小頻率范圍內,短周期速度傳感器比寬帶傳感器更靈敏。對于1 Hz信號頻率,削波電平通常為±0.01 m/s。22
A類加速度計的削波電平大于±3.5 g,而B類加速度計的削波電平為±2.5 g 22。
傳感器動態范圍是指最大可測量地震信號的均方根值與均方根自噪聲之比。但是,傳感器的均方根自噪聲會隨其帶寬而變化。表2列出了不同地震傳感器在不同頻率范圍下的動態范圍。
表2.不同類型傳感器的動態范圍:寬帶傳感器22
表3.不同類型傳感器的動態范圍:短周期傳感器22
表4.不同類型傳感器的動態范圍:加速度計22
傳感器通道和方向
地震波產生的線性地震動分量于所有三個笛卡爾軸中均存在。三軸地震傳感器的傳統標準方向是朝東、朝北和朝上。但是,對于水平和垂直傳感器,傳統(甚至某些現代)地震儀的結構是不同的,因為垂直傳感器必須考慮重力作用。同質三軸排列支持使用結構類似的傳感器來確定笛卡爾坐標軸上的線性地震動分量3。傳感器位于一個以儀器為中心的圓的三個均等間隔點上,并向其傾斜54.7度(相對于垂直方向)。使用式4所示的方程可將修改的坐標軸轉換回笛卡爾坐標軸。
式4展示了將同質三軸排列轉換為笛卡爾坐標系的轉換矩陣。
然而,大部分現代傳感器已被封裝和設計成支持三軸測量。這些傳感器有非常小的固有跨軸耦合效應。儀器指南要求跨軸耦合必須小于輸出信號的–70dB22。
分辨率和采樣速率
在非常低的頻率下,地震引起的地震動幅度可能非常小。用于地震儀器的數據記錄儀能夠以高分辨率記錄各種采樣速率的信號。寬帶地震儀至少需要20位數據分辨率,采樣速率為最低0.1 SPS(樣本/秒)至最高200 SPS。短周期速度傳感器和A類加速度計至少需要22位數據分辨率,采樣速率為1 SPS至200 SPS。B類加速度計對數據分辨率的要求較低,至少16位即可。22
采樣速率規格考慮了儀器及其內部數據存儲。但是,高級地震儀配備了更多的存儲空間,并且可以訪問大型網絡數據空間(例如云數據服務),因此可以支持超過額定規格的采樣速率,這樣便可開展更準確的數據分析和地震研究。
時間和位置信息
地震信號僅與特定的測量位置和時間有關。每臺地震儀器的數據都有時間戳和已知全球位置,這是標準。每臺地震儀器的每次記錄都必須能夠附加上其位置,要么通過手動用戶輸入,要么通過全球定位系統(GPS)設備或服務。現代地震儀還有內置實時時鐘,或者可以通過在線網絡時間協議(NTP)服務器等與精確參考時間同步。
輸出數據格式
全球地震儀器主要使用兩種數據格式:SEG-Y 和 SEED。SEG-Y格式是由勘探地球物理學家協會(SEG)開發的一種開放標準,用于處理三維地震信號之類的地球物理數據23。每個記錄都包括時間戳、采樣間隔和實際測量的坐標位置。格式規范和修訂的詳細信息可以在該組織的網站上查看。還應注意的是,有多種使用 SEG-Y 格式的地震分析開源軟件,但大多數軟件并未嚴格遵循規范。
地震數據交換標準(SEED)格式旨在簡化機構之間和儀器之間交換未處理的地震數據并確保準確性24。雖然它主要用于地震記錄存檔,但有不同版本的SEED(例如miniSEED和無數據SEED)用于數據分析和處理。miniSEED僅包含波形數據,而無數據SEED包含有關地震儀器和測站的信息。
ADI公司系統設計
為了快速部署和實現地震網絡,特別是針對城市和結構監測站,必須改變傳統地震儀的設計。遠程儀器必須符合當前儀器指南,以使現代地震信號測量符合既有數據標準并與之相關聯。但是,方案的成本和規模應大大縮小。將小型地震檢波器和MEMS加速度計用作地震動傳感器,再加上高性能ADC和數字信號處理器(DSP),是一種合理的解決方案。5
模數轉換器(ADC)考慮
DAS的數據采集單元(DAU)的主要設計考慮因素是模數轉換器(ADC)。傳統上,這是由數字現場系統(DFS)來執行的,該系統用作線性逐次逼近寄存器(SAR)型ADC和瞬時浮點(IFP)放大器。圖8所示為傳統DFS的框圖。
前置放大器(PA)、低截止(LC)、高通濾波器、陷波濾波器(NF)、抗混疊(AA)高通濾波器和IFP放大器的分立實施會增加系統噪聲和功耗。多路復用器的使用會增加開關、串擾和諧波失真。最重要的是,SAR ADC引起的量化誤差會限制系統的動態范圍和分辨率25。因此,最好使用其他架構和其他轉換器來設計DAU。
Sigma-Delta (∑-Δ)型轉換器
Σ-Δ型轉換器利用信號中的變化并將其添加到原始信號中。這樣可以減少SAR ADC固有的量化誤差,并能實現更高的分辨率和動態范圍。有了現代Σ-Δ型ADC,便不再需要以分立方式實現信號調理濾波器。這些ADC具有豐富且可配置的數字濾波器,它們可以執行與傳統信號鏈相同的功能。這就有效降低了系統噪聲和設計復雜性。此外,高端精密Σ-Δ型ADC能夠以至少24位分辨率同時檢測多個通道。
評論