新聞中心

        EEPW首頁 > 光電顯示 > 設計應用 > 一種用于白光LED驅動的電荷泵電路的設計方案

        一種用于白光LED驅動的電荷泵電路的設計方案

        作者: 時間:2017-10-27 來源:網絡 收藏

          0 引 言

        本文引用地址:http://www.104case.com/article/201710/368605.htm

          目前用于白光驅動的升壓型電路主要有電感型DC-DC電路和電路。電感型DC-DC電路存在EMI等問題,而電路結構簡單,EMI較小,得到了廣泛的應用。

          白光驅動的主要有兩種類型:電壓模式和電流模式。相對于電壓模式可能造成每個亮度不匹配的缺點,電流模式每路單獨輸出恒定電流,使亮度可以較好地匹配,而且不需要外圍平衡電阻,大大節省了空間。

          本文所提出的用于白光驅動的電流型電荷泵電路的設計方案。該設計方案采用1.5倍壓升壓,比傳統的2倍壓升壓模式提高了效率,并采用數字調光方式,可提供32級灰度輸出,滿足不同場合的要求。系統結構如圖1所示。主要可分為以下部分:帶隙基準電路,軟啟動電路,振蕩器,1.5倍壓電荷泵,數字調光模塊。當EN/SET端輸入高電平時,芯片啟動,Vin經過1.5倍壓電荷泵升壓,使輸出電壓穩定在5 V,如果EN/SET端輸入一串脈沖后置高電平,則數字調光模塊可記錄下脈沖個數,然后轉換成不同的輸出電流,實現調光功能。

          

          1 1.5 倍壓電荷泵原理

          1.1 基本原理

          1.5倍壓電荷泵 原理如圖2所示,其基本控制思想如下:OSC通過驅動電路,控制S1~S7的導通與關斷。時序如下:第一時刻,開通S1、S4、S6,Vin對電容C1充電,C2短接,使VC1=V1,VC2=0;第二時刻,關閉S1、S4、S6,開通S2、S3、S5、S7,C1對C2充電,使VC1=VC2=1/2 V1,最后加上V1對C3充電,周而復始,VCUT經過電阻分壓,與基準電壓做比較,控制上端MOS管的導通電阻,改變充電回路的RC充電常數,最終使輸出穩定在5 V.圖3為控制脈沖時序圖,其中D1為S1的驅動信號,低有效;D2為S4、S6的驅動信號,高有效;D3為S2、S3、S5、S7的驅動信號,低有效。為了防止時鐘饋通,驅動電路中包含了非交疊時鐘電路。

          

          

          1.2 實際電路設計

          整個開關管網絡由5個PMOS管S1、S2、S3、S5、S7及2個NMOS管S4、S6組成,如圖4所示。以P管S1和N管S4為例,計算開關管的寬長比。根據版圖設計規則的要求,單個管子的寬長比W/L可以設定為2.8μm/0.6μm.假設S1的寬長比為x(W/L),S4的寬長比為y(W/L)。本設計采用CSMC0.6 μm工藝,根據工藝及設計要求,V1=3.3 V,unCOX=50μA/V2 VTHN=0.7 V,|VTHP|=1 V,2up=un,因為

          

          其它管子的寬長比也可以同理求得。由于流過開關管的電流比較大,開關管的寬長比很大,一般采用晶體管并聯的形式,在版圖上通常以waffle的結構實現。

          如果開關管的襯底未與源端相接,則會產生襯底偏置效應,使開關管產生閾值損失,導致電荷泵電壓無法升至設定值。如圖4所示,開關管S1、S3、S4、S5、S6的源漏端能比較容易的判斷出來,S2、S7的兩端電壓高低未定,因此如果處理不妥當,會引起襯底偏置效應,本設計采用了一種方式,比較好地解決了這個問題。通過一個比較器對V1和Vout進行比較,如果Vout》V1,則讓S2、S7的襯底端接Vout端,如果Vout

          

          

          2 調光功能實現

          越來越多應用場合希望白光器能夠支持LED光亮度的調節。目前調光技術主要有兩種:PWM調光、數字調光。PWM(脈寬調制)調光方式是一種利用寬、窄不同的數字式脈沖,反復開關白光器來改變輸出電流,從而調節白光LED的亮度。但需要一個專用PWM口,同時會產生人耳聽得見的噪聲。本設計采用一種新型的數字調光技術。相比PWM控制有明顯的優點:將時序信號存儲在內部的寄存器中,使數據寄存器輸出一連串的控制信號,如果需要改變白光LED的亮度,則重新通過EN/SET對ROM進行修改即可,不需要一直給EN/SET連續的PWM信號來控制白光LED的亮度,這個特性大大減輕了微處理器的負擔,也減少了噪聲。

          其工作原理如下,EN/SET的第一個上升沿脈沖開啟IC并且初始化設置LED電流到最低的549 μA.當最終的時鐘序列輸入為想得到的亮度級別時,EN/SET引腳維持高電平來維持裝置輸出電流在程序設置的級別。當EN/SET引腳置低TOFF=480μs以后,裝置關閉。整個調光模塊可分為四大部分:延時控制,計數器,ROM,恒流源。

          (1) ROM與恒流源

          白光LED的亮度和通過它的電流成正比。本設計采用并聯恒流源的方式,最大輸出為20 mA,亮度分為32個等級。如圖7所示。ROM總共為8塊,組成32×8 bit容量。恒流源由PMOS管組成,由電荷泵輸出的5 V電源供電,每個恒流源icell電流為19.6μA.恒流源具有使能端,根據ROM中的數據決定該恒流源是否有效,其中ROM輸出“0”為該恒流源有效,“1”為該恒流源無效。

          

          以第5級亮度為例,如圖8所示,EN/SET端輸入5個脈沖后保持高電平,經過減數計數器計數輸出Q4~Q0數據為“11011”,ROM輸出×7~×0數據為“11110100”,即×3,×1,×0所接恒流源有效。輸出電流為:

          icell×32+icell×8+icell×4=0.863 mA

          表1列出了32級調光×7~×0的數據及對應輸出電流。

          

          數字調光部分的仿真波形如圖9所示,32個脈沖為一個循環。

          

          (2) 數字延時

          本設計設置了如下功能,如果EN端輸入低電平時間超過480 us,則裝置關閉。其原理如圖10所示,其中IN為EN進行脈沖整形后得到的波形,時序與EN相同。IN端輸入高電平時,PMOS管M3導通,VDD對C1進行充電,使NMOS管M5導通,施密特觸發器輸入被拉低,OUT端輸出低電平,芯片正常工作。當IN端輸入低電平時,M3截止,C1通過電流源M2進行放電,使M5截止,施密特觸發器輸入被拉高,OUT端輸出高電平。放電時問由C1的電容值和放電電流決定。仿真波形如圖11所示。在IN端輸入低電平超過478 μs后,OUT端輸處高電平,使芯片關閉。

          

          

          3 振蕩器

          本文設計一個600 kHz定頻率電流控制振蕩器,原理如圖12,首先假設Q端為“0”,則PMOS管M1導通,電流源通過M1向C1充電,同時PMOS管M3導通,R1無效,此時比較器反相端電壓VTH=VDD-R2I3,等C1兩端電壓略大于VTH時,比較器輸出高電平,使Q端變為“1”,C1通過NMOS管M2進行放電,同時M3截止,R1與R2串聯,此時比較器反相端電壓VTL=VDD-(R1+R2)I3,等到C1兩端電壓略小于VTL時,比較器輸出又發生翻轉,周而復始。波形通過4個反相器的整形,輸出600 kHz的方波。設I1為充電電流,I2為放電電流,T1為充電周期,T2為放電周期,則振蕩器的頻率為:

          

          調節充放電電流,使I1=I2=IC,則振蕩頻率可表示為:

          

          式中:IC為充放電電流。圖13為振蕩器輸出及C1電容上的電壓仿真波形。

          該電荷泵還包括帶隙基準電路,溫度保護電路,軟啟動電路等等,限于篇幅,在此不作累述。

          

          4 結 論

          本文分享了一個用于白光的電流型電荷泵的設計方案,周邊只使用3個小的陶瓷電容器,可驅動4個白光LED,單路最大輸出電流20 mA.與電壓型電荷泵相比,不同LED之間亮度匹配較好,由于不需要鎮流電阻,因此節省了面積。電路采用1.5×分數倍頻模式,效率可達93%.具有32級數字調光功能,可以滿足不同需要。根據CSMC 0.6 μm工藝,通過Cadence Spectre軟件進行了仿真,仿真結果表明,該電路滿足設計方案的要求,具有較廣闊的應用前景。



        關鍵詞: LED LED驅動 電荷泵

        評論


        相關推薦

        技術專區

        關閉
        主站蜘蛛池模板: 沁水县| 墨竹工卡县| 东至县| 日土县| 平潭县| 镇江市| 许昌县| 叶城县| 兰西县| 浙江省| 宝丰县| 宣恩县| 确山县| 怀化市| 正阳县| 汝南县| 贡嘎县| 镇坪县| 尼木县| 武冈市| 湖南省| 连城县| 尉犁县| 海南省| 桂阳县| 循化| 邵阳市| 聊城市| 滦南县| 临沧市| 沙洋县| 甘德县| 辽宁省| 东安县| 牟定县| 曲周县| 张家口市| 郸城县| 嘉鱼县| 大埔县| 武定县|