CDC為診斷系統提供簡單而穩定的電平檢測
方法
圖8所示的流程圖列出了接近液體時采用的技術。
圖8. 簡化控制流程圖
當探針足夠接近表面時,探針速度大幅下降,以便最終接近液體表面。 為使效率最大化,該點應盡量靠近表面,但在穿透液體表面之前接近速度必須下降,以確保探針停止移動之前對穿刺距離具有良好的控制。
與液體表面的接觸可利用電容值并通過該點的斷續程度加以確定(如本文所述),也可通過電容曲線斜率確定。 求均值可降低噪聲,但不執行該操作也能可靠地檢測出較大的偏移。 歸一化電容數據可改善穩定性,但其影響不如接近階段那么大。
隨后,便可將探針驅至表面以下的預定距離。 具有精密電機控制能力時,這很容易做到。 若無精密電機控制,可估算速度,且探針可移動一段固定的時間。
穿透液體之后,會得到電容讀數的兩個特性數據。 首先,隨著探針在液體中移動,測量值的變化相對較小。 雖然我們期望恒定變化速率有助于確定穿透深度,但并未觀察到這樣的現象。 其次,不同液位下的測量值變化極小,如圖9所示。穿透灌滿的試管與穿透幾乎為空的試管之后,測得的電容值基本相同。
圖9. 電容與液位的關系
穿透液體表面之后,探針需要多少時間才能停止取決于包括電機控制系統本身在內的幾個因素,但一條經過仔細研究的接近曲線可保證嚴格控制探針,并使探針速度最大化。 實驗室中,探針以最大速度在兩個電容讀數之間移動約0.45 mm,可在穿透表面0.25 mm距離之內停止。 若采樣速率更高且探針在兩個樣本之間移動大約0.085 mm,則它可在距離液體表面0.05 mm距離之內停止。 無論何種情況,探針均以最大速度工作,直到距離液體表面大約1 mm至3 mm處,從而提供最高效率和吞吐速率。
結論
這種打破傳統使用集成式電容數字轉換器的方法提供了一種簡單而穩定的電平檢測解決方案。 接近曲線同時利用電容和斜率測量控制探針的運動。備用部署方案具有更高的穩定性,或者提供更多信息。本解決方案可在穿透表面后快速可靠地使探針停止移動,同時盡可能以最高探針速度移動至最終位置。 本文僅淺顯地描述了CDC技術用于電平檢測的情況。 經驗豐富的工程師可以本文的思路作為出發點,針對特定應用環境對本解決方案加以改進。(end)
評論