新聞中心

        EEPW首頁 > 電源與新能源 > 設計應用 > LED電源設計及經驗匯編

        LED電源設計及經驗匯編

        作者: 時間:2016-12-08 來源:網絡 收藏

        的散熱,暴曬則容易引起高溫和電線及其他元器件的老化,從實際使用中的經驗來看,旋轉接線插頭的故障率較高,多數為漏水造成故障。

        本文引用地址:http://www.104case.com/article/201612/328060.htm

          7、模塊化設計。

          模塊化設計已經成為當今的潮流,必須在模塊電源一體化上想辦法,,如果電源能用插拔的方式解決維護問題,一定會受到用戶的歡迎,同時還需建立接口標準化,讓不同廠家的LED燈電源能夠通用。

          高效高可靠LED燈具設計的五點忠告。

          不要使用雙極型功率器件

          Doug Bailey指出由于雙極型功率器件比MOSFET便宜,一般是2美分左右一個,所以一些設計師為了降低LED驅動成本而使用雙極型功率器件,這樣會嚴重影響電路的可靠性,因為隨著LED驅動電路板溫度的提升,雙極型器件的有效工作范圍會迅速縮小,這樣會導致器件在溫度上升時故障從而影響LED燈具的可靠性,正確的做法是要選用MOSFET器件,MOSFET器件的使用壽命要遠遠長於雙極型器件。

          MOSFET的耐壓不要低於700V

          耐壓600V的MOSFET比較便宜,很多認為LED燈具的輸入電壓一般是220V,所以耐壓600V足夠了,但是很多時候電路電壓會到340V,在有浪涌的時候,600V的MOSFET很容易被擊穿,從而影響了LED燈具的壽命,實際上選用600VMOSFET可能節省了一些成本但是付出的卻是整個電路板的代價,所以,“不要選用600V耐壓的MOSFET,最好選用耐壓超過700V的MOSFET。”他強調。

          盡量不要使用電解電容

          LED驅動電路中到底要不要使用電解電容?目前有支持者也有反對者,支持者認為如果可以將電路板溫度控制好,依次達成延長電解電容壽命的目的,例如選用 105度壽命為8000小時的高溫電解電容,根據通行的電解電容壽命估算公式“溫度每降低10度,壽命增加一倍”,那么它在95度環境下工作壽命為 16000小時,在85度環境下工作壽命為32000小時,在75度環境下工作壽命為64000小時,假如實際工作溫度更低,那么壽命會更長!由此看來,只要選用高品質的電解電容對驅動電源的壽命是沒有什麼影響的!

          還有的支持者認為由無電解電容帶來的高紋波電流而導致的低頻閃爍會對某些人眼造成生理上的不適,幅度大的低頻紋波也會導致一些數碼像機設備出現差頻閃爍的亮暗柵格。所以,高品質光源燈具還是需要電解電容的。不過反對者則認為電解電容會自然老化,另外,LED燈具的溫度極難控制,所以電解電容的壽命必然會減少,從而影響LED燈具的壽命。

          對此,Doug Bailey認為,在LED驅動電路輸入部分可以考慮不用電解電容,實際上使用PI的Link Switch-PH就可以省去電解電容,PI的單級PFC/恒流設計可以讓設計師省去大容量電容,在輸出電路中,可以用高耐壓陶瓷電容來代替電解電容從而提升可靠性,“有的人在設計兩級電路的時候,在輸出采用了一個400V的電解電容,這會嚴重影響電路的可靠性,建議采用單級電路用陶瓷電容就可以了。”他強調。“對於不太關注調光功能、高溫環境及需要高可靠性的工業應用來說,我強烈建議不采用電解電容進行設計。”

          盡量使用MOSFET器件

          如果設計的LED燈具功率不是很高,Doug建議使用集成了MOSFET的LED驅動器產品,因為這樣做的好處是集成MOSFET的導通電阻少,產生的熱量要比分立的少,另外,就是集成的MOSFET是控制器和FET在一起,一般都有過熱關斷功能,在MOSFET過熱時會自動關斷電路達到保護LED燈具的目的,這對LED燈具非常重要,因為LED燈具一般很小巧且難以進行空氣散熱。“有的時候會發生LED因過熱燃燒傷人的情況,但是我們的方案從來不會這樣的。”他表示。

          盡量使用單級架構電路

          Doug表示有些LED電路采用了兩級架構,即“PFC(功率因數校正)+隔離DC/DC變換器”的架構,這樣的設計會降低電路的效率。例如,如果 PFC的效率是95%,而DC/DC部分的效率是88%,則整個電路的效率會降低到83.6%!“PI的Link Switch-PH器件同時將PFC/CC控制器、一個725VMOSFET和MOSFET驅動器集成到單個封裝中,將驅動電路的效率提升到 87%!”Doug指出,“這樣的器件可大大簡化電路板布局設計,最多能省去傳統隔離反激式設計中所用的25個元件,省去的元件包括高壓大容量電解電容和光耦器。”Doug表示LED兩級架構適用於必須使用第二個恒流驅動電路才能使PFC驅動LED恒流的舊式驅動器。這些設計已經過時,不再具有成本效益,因此在大多數情況下都最好采用單級設計。

          如何提高LED驅動電源可靠性設計

          目前LED 驅動電源存在驅動能力較低,保護功能較少,輸出電壓電流不穩定,可靠性差等問題,很難達到要求,根據設計經驗提出了驅動電源硬件電路的設計方案,本設計能夠很好地提高LED 驅動電源的可靠性。

          總體電路設計

          LED 驅動電源的總體設計如圖1 所示。圖1 中主電路中U 為220 V 交流輸入電壓; RC,CC和DC構成RCD 電路; T 為變壓器; S 為開關管; D 為整流二極管; C為整流電容; RC為采樣電阻,具體電路如圖1 所示。

          電路在設計時考慮到電路的可靠性,輸入端應具有隔離電路,以保護電網和用電設備的安全。輸入端設計了輸入保護電路,用來保護LED 驅動電源在電網側產生脈動瞬態干擾下能夠正常工作,并有效抑制共模和差模干擾。為了提高電路的功率因數,電路中采用了有源功率因數校正電路。為了實現恒流輸出,采用電流反饋控制,RC采樣電阻感應輸出電流大小,與參考點電壓進行比較,輸出信號通過光電耦合電路輸入到控制器,產生PWM 控制信號,控制變壓器的工作方式,已達到變壓器恒流輸出。

        圖1 LED 驅動電源總體設計電路

           部分電路設計

          ( 1) 輸入保護電路設計

          LED 大功率燈驅動電源一般用在室外,用電環境相對比較惡劣,且外界的各種干擾容易使電源出現問題。同時,LED 燈驅動電源的故障,也容易對電網的安全造成隱患。因此,有必要在輸入端設計保護電路,用來保護用電設備和電網的安全。

          電路中有負溫度系數熱敏電阻,用來啟動過電流保護。通過保險絲進行過電流保護。利用壓敏電阻來抑制瞬變傳導產生的干擾,吸收輸入端的浪涌和脈沖干擾。電路中設有共模與差模干擾抑制電路,用來減小LED 驅動電源對其他用電設備的干擾,同時可以抑制外界用電設備對驅動電源的干擾。

          ( 2) 功率因數校正電路

          將交流220 V 市電經整流后供給負載使用,最常用的整流方式是由4 個二極管組成的整流橋將交流電變換為直流電,但是這種方法存在著一個無法避免的缺點: 由二極管和電容組成的非線性電路會產生大量的電流諧波和無功功率,造成電網的污染。這種諧波污染不僅會使電網電壓發生畸變,而且還會造成用電設備的故障和損壞。另外,用電設備的功率因數越高,則有功功率所占的比重越大,設備就越節能。

          為了提高功率因數,需要做兩個方面的工作: 一方面減小輸入電流和輸入電壓之間的相位差φ,努力使兩者同相位; 另一方面,需要減小輸入電流的諧波含量,采取一定的方法使輸入電流的波形接近正弦波。

          基于上述要求,可以采用安森美公司生產的MC33260 芯片作為有源功率因數控制芯片,此芯片只需要使用最少的外部元件便可以實現控制要求,可以極大地減小電感和功率開關的尺寸,降低系統的成本且功能還能達到要求。電路如圖2 所示。

        圖2 功率因數校正電路

          (3) RCD 緩沖電路設計

          為了防止開關管被峰值電壓擊穿,通常可以采用的方法有如下兩種: 一是減小漏感,二是通過設計RCD 緩沖電路吸收很高的電壓尖峰能量。雖然在變壓器的加工過程中將線圈纏緊并緊密地包圍住氣隙,然后將線圈外圍包上銅箔可以有效地減小漏感; 但變壓器漏感無法完全消失,因此需要設計RCD 電路對電壓峰值進行吸收,電路如圖3 所示。

        圖3 RCD 緩沖電路

          (4) 變換電路設計

          LED 路燈驅動電源所需的輸出功率較大,需要較高的轉換效率,且需要較好的調節性和較小的紋波,由于考慮到需要將LED 照明裝置與電網隔離,以提高安全性,所以采用單端反激式DC-DC 變換器,這種隔離式的DC-DC 變換電路的變壓器不僅具有隔離和變壓的作用,還具有電感的特性,可以起到儲存能量的作用,且變換器工作于連續工作模式。這種變換器特別適用于功率為100 W ~ 200 W 之間的電源,且輸出電壓較高,輸出電流較小的場合。這種工作模式雖然會使變壓器副邊的二極管損耗較大,但可以減小變壓器的鐵芯損耗。變壓器副邊產生的串擾可以采用串聯飽和電感的方式來進行抑制。  (5) PWM 控制電路設計

          DC-DC 變換器的PWM 控制原理有兩種: 電壓控制型和電流控制型。考慮到穩定性問題,我們采用電流控制型PWM 控制器,即NCP1230 模塊( 圖4) .它是一種峰值電流控制模式的PWM 控制器,具有向前極供電的功能,在空載時關閉PFC 電路,能夠提高電源的效率。這款芯片還具有周期跳頻,內部斜坡電壓補償,軟啟動等一系列功能。

        圖4 NCP1230 模塊PWM 控制電路

          電路的EMC 防護

        LED 燈的驅動電源受安裝環境條件的影響,很容易受到電磁干擾,特別是雷擊干擾。為此,驅動電



        評論


        技術專區

        關閉
        主站蜘蛛池模板: 盘锦市| 海门市| 泊头市| 新郑市| 巍山| 陆川县| 都安| 手机| 茶陵县| 日土县| 高碑店市| 托克托县| 绵阳市| 井研县| 涪陵区| 奉节县| 南澳县| 丹寨县| 增城市| 兴化市| 故城县| 晴隆县| 镇平县| 武陟县| 大城县| 扶绥县| 包头市| 年辖:市辖区| 宜春市| 金寨县| 大荔县| 钟祥市| 乐都县| 兴国县| 金塔县| 芮城县| 安溪县| 义乌市| 济阳县| 南通市| 吴江市|