新聞中心

        EEPW首頁 > 嵌入式系統 > 設計應用 > 淺談分析Arm linux 內核移植及系統初始化的過程二

        淺談分析Arm linux 內核移植及系統初始化的過程二

        作者: 時間:2016-11-09 來源:網絡 收藏
        4.1. 處理器、設備4.2. 描述
        設備描述主要兩個結構體完成:structresource和structplatform_device。
        先來看看著兩個結構體的定義:
        structresource{
        resource_size_tstart;
        resource_size_tend;
        constchar*name;
        unsignedlongflags;
        structresource*parent,*sibling,*child;
        };
        Resource結構體主要是描述了設備在系統中的起止地址、名稱、標志以及為了鏈式描述方便指向本結構體類型的指針。Resource定義的實例將被添加到platform_device結構體對象中去。
        structplatform_device{
        constchar *name;
        u32 id;
        structdevice dev;
        u32 num_resources;
        structresource *resource;
        };
        Platform_device結構體包括結構體的名稱、ID號、平臺相關的信息、設備的數目以及上面定義的resource信息。Platform_device結構對象將被直接通過設備操作函數注冊導系統中去。具體注冊和注銷過程在下一節介紹。
        4.3. 處理器、設備4.4. 操作
        (1)intplatform_device_register(structplatform_device*pdev);注冊設備
        (2)voidplatform_device_unregister(structplatform_device*pdev);注銷設備
        (3)intplatform_add_devices(structplatform_device**devs,intnum);添加設備,通過調用上面兩個函數實現。
        4.5. 添加Nandflash設備4.6.
        下面以nandflash設備的描述為例,具體介紹下設備的描述和注冊過程。
        //resource結構體實例s3c_nand_resource對nandflash控制器描述,包括控制器的起止地址和標志。
        staticstructresources3c_nand_resource[]={
        [0]={
        .start=S3C2410_PA_NAND,
        .end=S3C2410_PA_NAND+S3C24XX_SZ_NAND-1,
        .flags=IORESOURCE_MEM,
        }
        };
        //platform_device結構體實例s3c_device_nand定義了設備的名稱、ID號并把resource對象作為其成員之一。
        structplatform_devices3c_device_nand={
        .name ="s3c2410-nand",
        .id =-1,
        .num_resources =ARRAY_SIZE(s3c_nand_resource),
        .resource =s3c_nand_resource,
        };
        //nandflash的分區情況,由mtd_partition結構體定義。
        staticstructmtd_partitionsmdk_default_nand_part[]={
        [0]={
        .name ="BootAgent",
        .size =SZ_16K,
        .offset =0,
        },
        [1]={
        .name ="S3C2410flashpartition1",
        .offset=0,
        .size =SZ_2M,
        },
        [2]={
        .name ="S3C2410flashpartition2",
        .offset=SZ_4M,
        .size =SZ_4M,
        },
        [3]={
        .name ="S3C2410flashpartition3",
        .offset =SZ_8M,
        .size =SZ_2M,
        },
        [4]={
        .name ="S3C2410flashpartition4",

        .offset = SZ_1M * 10,
        .size = SZ_4M,
        },
        [5] = {
        .name = "S3C2410 flash partition 5",
        .offset = SZ_1M * 14,
        .size = SZ_1M * 10,
        },
        [6] = {
        .name = "S3C2410 flash partition 6",
        .offset = SZ_1M * 24,
        .size = SZ_1M * 24,
        },
        [7] = {
        .name = "S3C2410 flash partition 7",
        .offset = SZ_1M * 48,
        .size = SZ_16M,
        }
        };

        static struct s3c2410_nand_set smdk_nand_sets[] = {
        [0] = {
        .name = "NAND",
        .nr_chips = 1,
        .nr_partitions = ARRAY_SIZE(smdk_default_nand_part),
        .partitions = smdk_default_nand_part,
        },
        };

        本文引用地址:http://www.104case.com/article/201611/318027.htm

        /* choose a set of timings which should suit most 512Mbit
        * chips and beyond.
        */

        static struct s3c2410_platform_nand smdk_nand_info = {
        .tacls = 20,
        .twrph0 = 60,
        .twrph1 = 20,
        .nr_sets = ARRAY_SIZE(smdk_nand_sets),
        .sets = smdk_nand_sets,
        };

        /* devices we initialise */
        // 最后將nand flash 設備加入到系統即將注冊的設備集合中。
        static struct platform_device __initdata *smdk_devs[] = {
        &s3c_device_nand,
        &smdk_led4,
        &smdk_led5,
        &smdk_led6,
        &smdk_led7,
        };

        然后通過smdk_machine_init()函數,調用設備添加函數platform_add_devices(smdk_devs, ARRAY_SIZE(smdk_devs)) 完成設備的注冊。具體過程參見系統初始化的相關部分。
        5. 系統初始化
        5.1. 系統初始化的主干線
        Start_kernel() èsetup_arch() èreset_init() è kernel_thread(init …) è init() è do_basic_setup() èdriver_init() è do_initcall()

        Start_kernel()函數負責初始化內核各個子系統,最后調用reset_init(),啟動一個叫做init的內核線程,繼續初始化。Start_kernel()函數在init/main.c中實現。

        asmlinkage void __init start_kernel(void)
        {
        char * command_line;
        extern struct kernel_param __start___param[], __stop___param[];

        smp_setup_processor_id();

        /*
        * Need to run as early as possible, to initialize the
        * lockdep hash:
        */
        lockdep_init();

        local_irq_disable();
        early_boot_irqs_off();
        early_init_irq_lock_class();

        /*
        * Interrupts are still disabled. Do necessary setups, then
        * enable them
        */
        lock_kernel();
        boot_cpu_init();
        page_address_init();
        printk(KERN_NOTICE);
        printk(linux_banner);
        setup_arch(&command_line);
        //setup processor and machine and destinate some pointers for do_initcalls() s

        5、淺談分析Arm linux 內核移植及系統初始化的過程 咨詢QQ:313807838
        // for example init_machine pointer is initialized with smdk_machine_init() , and //init_machine() is called by customize_machine(), and the is processed by //arch_initcall(fn). Therefore smdk_machine_init() is issured. by edwin
        setup_per_cpu_areas();
        smp_prepare_boot_cpu(); /* arch-specific boot-cpu hooks */

        /*
        * Set up the scheduler prior starting any interrupts (such as the
        * timer interrupt). Full topology setup happens at smp_init()
        * time - but meanwhile we still have a ing scheduler.
        */
        sched_init();
        /*
        * Disable preemption - early bootup scheduling is extremely
        * fragile until we cpu_idle() for the first time.
        */
        preempt_disable();
        build_all_zonelists();
        page_alloc_init();
        printk(KERN_NOTICE "Kernel command line: %sn", saved_command_line);
        parse_early_param();
        parse_args("Booting kernel", command_line, __start___param,
        __stop___param - __start___param,
        &unknown_bootoption);
        sort_main_extable();
        unwind_init();
        trap_init();
        rcu_init();
        init_IRQ();
        pidhash_init();
        init_timers();
        hrtimers_init();
        softirq_init();
        timekeeping_init();
        time_init();
        profile_init();
        if (!irqs_disabled())
        printk("start_kernel(): bug: interrupts were enabled earlyn");
        early_boot_irqs_on();
        local_irq_enable();

        /*
        * HACK ALERT! This is early. Were enabling the console before
        * weve done PCI setups etc, and console_init() must be aware of
        * this. But we do want output early, in case something goes wrong.
        */
        console_init();
        if (panic_later)
        panic(panic_later, panic_param);

        lockdep_info();

        /*
        * Need to run this when irqs are enabled, because it wants
        * to self-test [hard/soft]-irqs on/off lock inversion bugs
        * too:
        */
        locking_selftest();

        #ifdef CONFIG_BLK_DEV_INITRD
        if (initrd_start && !initrd_below_start_ok &&
        initrd_start < min_low_pfn << PAGE_SHIFT) {
        printk(KERN_CRIT "initrd overwritten (0x%08lx < 0x%08lx) - "

        6、淺談分析Arm linux 內核移植及系統初始化的過程咨詢QQ:313807838
        "disabling it.n",initrd_start,min_low_pfn << PAGE_SHIFT);
        initrd_start = 0;
        }
        #endif
        vfs_caches_init_early();
        cpuset_init_early();
        mem_init();
        kmem_cache_init();
        setup_per_cpu_pageset();
        numa_policy_init();
        if (late_time_init)
        late_time_init();
        calibrate_delay();
        pidmap_init();
        pgtable_cache_init();
        prio_tree_init();
        anon_vma_init();
        #ifdef CONFIG_X86
        if (efi_enabled)
        efi_enter_virtual_mode();
        #endif
        fork_init(num_physpages);
        proc_caches_init();
        buffer_init();
        unnamed_dev_init();
        key_init();
        security_init();
        vfs_caches_init(num_physpages);
        radix_tree_init();
        signals_init();
        /* rootfs populating might need page-writeback */
        page_writeback_init();
        #ifdef CONFIG_PROC_FS
        proc_root_init();
        #endif
        cpuset_init();
        taskstats_init_early();
        delayacct_init();

        check_bugs();

        acpi_early_init(); /* before LAPIC and SMP init */

        /* Do the rest non-__inited, were now alive */
        rest_init();
        }

        分析start_kernel()源碼, 其中setup_arch() 和 reset_init()是兩個比較關鍵的函數。下面將具體分析這兩個函數。
        5.2. setup_arch()函數分析
        首先我們來分析下setup_arch()函數。
        Setup_arch()函數主要工作是安裝cpu和machine,并為start_kernel()后面的初始化函數指針指定值。
        其中setup_processor()函數調用linux/arch/arm/kernel/head_common.S 中的lookup_processor_type函數查詢處理器的型號并安裝。

        Setup_machine()函數調用inux/arch/arm/kernel/head_common.S 中的lookup_machine_type(__machine_arch_type)函數根據體系結構號__machine_arch_type,在 __arch_info_begin和__arch_info_end段空間查詢體系結構。問題是__machine_arch_type是在什么時候賦 的初值?__arch_info_begin和__arch_info_end段空間到底放的是什么內容?
        __machine_arch_type是一個全局變量,在linux/boot/decompress/misc.c的解壓縮函數中得以賦值。
        decompress_kernel(ulg output_start, ulg free_mem_ptr_p, ulg free_mem_ptr_end_p, int arch_id)
        {
        __machine_arch_type = arch_id;
        }

        __arch_info_begin和__arch_info_end段空間到底放的內容由鏈接器決定,存放是.arch.info.init段的 內容。這個段是通過段屬性__attribute__指定的。Grep一下.arch.info.init 得到./include/asm/mach/arch.h:53: __attribute__((__section__(".arch.info.init"))) = { 在linux/include/asm-arm/mach/arch.h 中發現MACHINE_START宏定義。

        #define MACHINE_START(_type,_name)
        static const struct machine_desc __mach_desc_##_type
        __attribute_used__
        __attribute__((__section__(".arch.info.init"))) = {
        .nr = MACH_TYPE_##_type,
        .name = _name,

        #define MACHINE_END
        };

        inux/arch/arm/mach-s3c2410/mach-smdk2410.c中對.arch.info.init段的初始化如下。

        MACHINE_START(SMDK2410, "SMDK2410") /* @TODO: request a new identifier and switch
        * to SMDK2410 */
        /* Maintainer: Jonas Dietsche */
        .phys_io = S3C2410_PA_UART,
        .io_pg_offst = (((u32)S3C24XX_VA_UART) >> 18) & 0xfffc,
        .boot_params = S3C2410_SDRAM_PA + 0x100,
        .map_io = smdk2410_map_io,
        .init_irq = s3c24xx_init_irq,
        .init_machine = smdk_machine_init,
        .timer = &s3c24xx_timer,
        MACHINE_END

        由此可見在.arch.info.init段內存放了__desc_mach_desc_SMDK2410結構體。初始化了相應的初始化函數指針。問題又來了, 這些初始化指針函數是什么時候被調用的呢?
        分析發現,不一而同。
        如 s3c24xx_init_irq()函數是通過start_kernel()里的init_IRQ()函數調用init_arch_irq()實現的。 因為在MACHINE_START結構體中 .init_irq = s3c24xx_init_irq,而在setup_arch()函數中init_arch_irq = mdesc->init_irq, 所以調用init_arch_irq()就相當于調用了s3c24xx_init_irq()。
        又如smdk_machine_init()函數 的初始化。在MACHINE_START結構體中,函數指針賦值,.init_machine = smdk_machine_init。而init_machine()函數被linux/arch/arm/kernel/setup.c文件中的 customize_machine()函數調用并被arch_initcall(Fn)宏處 理,arch_initcall(customize_machine)。 被arch_initcall(Fn)宏處理過函數將linux/init/main.c
        do_initcalls()函數調用。 具體參看下邊的部分。

        void __init setup_arch(char **cmdline_p)
        {
        struct tag *tags = (struct tag *)&init_tags;
        struct machine_desc *mdesc;
        char *from = default_command_line;

        setup_processor();
        mdesc = setup_machine(machine_arch_type);//machine_arch_type =SMDK2410 by edwin
        machine_name = mdesc->name;

        if (mdesc->soft_reboot)
        reboot_setup("s");

        if (mdesc->boot_params)
        tags = phys_to_virt(mdesc->boot_params);

        /*
        * If we have the old style parameters, convert them to
        * a tag list.
        */
        if (tags->hdr.tag != ATAG_CORE)
        convert_to_tag_list(tags);
        if (tags->hdr.tag != ATAG_CORE)
        tags = (struct tag *)&init_tags;

        if (mdesc->fixup)
        mdesc->fixup(mdesc, tags, &from, &meminfo);

        if (tags->hdr.tag == ATAG_CORE) {
        if (meminfo.nr_banks != 0)
        squash_mem_tags(tags);
        parse_tags(tags);
        }

        init_mm.start_code = (unsigned long) &_text;
        init_mm.end_code = (unsigned long) &_etext;
        init_mm.end_data = (unsigned long) &_edata;
        init_mm.brk = (unsigned long) &_end;

        memcpy(saved_command_line, from, COMMAND_LINE_SIZE);

        8、淺談分析Arm linux 內核移植及系統初始化的過程 咨詢QQ:313807838
        saved_command_line[COMMAND_LINE_SIZE-1] = ;
        parse_cmdline(cmdline_p, from);
        paging_init(&meminfo, mdesc);
        request_standard_resources(&meminfo, mdesc);

        #ifdef CONFIG_SMP
        smp_init_cpus();
        #endif

        cpu_init();

        /*
        * Set up various architecture-specific pointers
        */
        init_arch_irq = mdesc->init_irq;
        system_timer = mdesc->timer;
        init_machine = mdesc->init_machine;

        #ifdef CONFIG_VT
        #if defined(CONFIG_VGA_CONSOLE)
        conswitchp = &vga_con;
        #elif defined(CONFIG_DUMMY_CONSOLE)
        conswitchp = &dummy_con;
        #endif
        #endif
        }
        5.3. rest_init()函數分析
        下面我們來分析下rest_init()函數。
        Start_kernel() 函數負責初始化內核各子系統,最后調用reset_init(),啟動一個叫做init的內核線程,繼續初始化。在init內核線程中,將執行下列 init()函數的程序。Init()函數負責完成根文件系統的掛接、初始化設備驅動程序和啟動用戶空間的init進程等重要工作。

        static void noinline rest_init(void)
        __releases(kernel_lock)
        {
        kernel_thread(init, NULL, CLONE_FS | CLONE_SIGHAND);
        numa_default_policy();
        unlock_kernel();

        /*
        * The boot idle thread must execute schedule()
        * at least one to get things moving:
        */
        preempt_enable_no_resched();
        schedule();
        preempt_disable();

        /* Call into cpu_idle with preempt disabled */
        cpu_idle();
        }


        static int init(void * unused)
        {
        lock_kernel();
        /*
        * init can run on any cpu.
        */
        set_cpus_allowed(current, CPU_MASK_ALL);
        /*
        * Tell the world that were going to be the grim
        * reaper of innocent orphaned children.
        *
        * We dont want people to have to make incorrect
        * assumptions about where in the task array this
        * can be found.
        */
        child_reaper = current;

        smp_prepare_cpus(max_cpus);

        do_pre_smp_initcalls();

        smp_init();
        sched_init_smp();

        cpuset_init_smp();

        /*
        * Do this before initcalls, because some drivers want to access
        * firmware files.
        */
        populate_rootfs(); //掛接根文件系統

        do_basic_setup(); //初始化設備驅動程序

        /*
        * check if there is an early userspace init. If yes, let it do all
        * the work //啟動用戶空間的init進程

        9、淺談分析Arm linux 內核移植及系統初始化的過程 咨詢QQ:313807838
        */

        if (!ramdisk_execute_command)
        ramdisk_execute_command = "/init";

        if (sys_access((const char __user *) ramdisk_execute_command, 0) != 0) {
        ramdisk_execute_command = NULL;
        prepare_namespace();
        }

        /*
        * Ok, we have completed the initial bootup, and
        * were essentially up and running. Get rid of the
        * initmem segments and start the user-mode stuff..
        */
        free_initmem();
        unlock_kernel();
        mark_rodata_ro();
        system_state = SYSTEM_RUNNING;
        numa_default_policy();

        if (sys_open((const char __user *) "/dev/console", O_RDWR, 0) < 0)
        printk(KERN_WARNING "Warning: unable to open an initial console.n");

        (void) sys_dup(0);
        (void) sys_dup(0);

        if (ramdisk_execute_command) {
        run_init_process(ramdisk_execute_command);
        printk(KERN_WARNING "Failed to execute %sn",
        ramdisk_execute_command);
        }

        /*
        * We try each of these until one succeeds.
        *
        * The Bourne shell can be used instead of init if we are
        * trying to recover a really broken machine.
        */
        if (execute_command) {
        run_init_process(execute_command);
        printk(KERN_WARNING "Failed to execute %s. Attempting "
        "defaults...n", execute_command);
        }
        run_init_process("/sbin/init");
        run_init_process("/etc/init");
        run_init_process("/bin/init");
        run_init_process("/bin/sh");

        panic("No init found. Try passing init= option to kernel.");
        }

        5.3.1. 掛接根文件系統
        Linux/init/ramfs.c
        void __init populate_rootfs(void)
        {
        char *err = unpack_to_rootfs(__initramfs_start,
        __initramfs_end - __initramfs_start, 0);
        if (err)
        panic(err);
        #ifdef CONFIG_BLK_DEV_INITRD
        if (initrd_start) {
        #ifdef CONFIG_BLK_DEV_RAM
        int fd;
        printk(KERN_INFO "checking if image is initramfs...");
        err = unpack_to_rootfs((char *)initrd_start,
        initrd_end - initrd_start, 1);
        if (!err) {
        printk(" it isn");
        unpack_to_rootfs((char *)initrd_start,
        initrd_end - initrd_start, 0);
        free_initrd();
        return;
        }
        printk("it isnt (%s); looks like an initrdn", err);

        fd = sys_open("/initrd.image", O_WRONLY|O_CREAT, 0700);
        if (fd >= 0) {
        sys_write(fd, (char *)initrd_start,
        initrd_end - initrd_start);
        sys_close(fd);
        free_initrd();
        }
        #else
        printk(KERN_INFO "Unpacking initramfs...");
        err = unpack_to_rootfs((char *)initrd_start,
        initrd_end - initrd_start, 0);
        if (err)
        panic(err);
        printk(" donen");
        free_initrd();
        #endif
        }
        #endif
        }

        5.3.2. 初始化設備5.3.3. 驅動程序
        linux/init/main.c
        static void __init do_basic_setup(void)
        {
        /* drivers will send hotplug events */
        init_workqueues();
        usermodehelper_init();
        driver_init(); /* 初始化驅動程序模型。調用驅動初始化函數初始化子系統。 */

        #ifdef CONFIG_SYSCTL
        sysctl_init();
        #endif

        do_initcalls();
        }


        linux/init/main.c
        extern initcall_t __initcall_start[], __initcall_end[];

        static void __init do_initcalls(void)
        {
        initcall_t *call;
        int count = preempt_count();

        for (call = __initcall_start; call < __initcall_end; call++) {
        char *msg = NULL;
        char msgbuf[40];
        int result;

        if (initcall_debug) {
        printk("Calling initcall 0x%p", *call);
        print_fn_deor_symbol(": %s()",
        (unsigned long) *call);
        printk("n");
        }

        result = (*call)();

        ……
        ……
        ……
        }

        /* Make sure there is no pending stuff from the initcall sequence */
        flush_scheduled_work();
        }
        分 析上面一段代碼可以看出,設備的初始化是通過do_basic_setup()函數調用do_initcalls()函數,實現 __initcall_start, __initcall_end段之間的指針函數執行的。而到底是那些驅動函數怎么會被集中到這個段內的呢?我們知道系統內存空間的分配是由鏈接器ld讀取 鏈接腳本文件決定。鏈接器將同樣屬性的文件組織到相同的段里面去,如所有的.text段都被放在一起。在鏈接腳本里面可以獲得某塊內存空間的具體地址。我 們來看下linux-2.6.18.8archarmkernelvmlinux.lds.S文件。由于文件過長,只貼出和 __initcall_start, __initcall_end相關的部分。
        __initcall_start = .;
        *(.initcall1.init)
        *(.initcall2.init)
        *(.initcall3.init)
        *(.initcall4.init)
        *(.initcall5.init)
        *(.initcall6.init)
        *(.initcall7.init)
        __initcall_end = .;
        從 腳本文件中我們可以看出, 在__initcall_start, __initcall_end之間放置的是屬行為(.initcall*.init)的函數數據 。在linux/include/linux/init.h文件中可以知道,(.initcall*.init)屬性是由 __define_initcall(level, fn)宏設定的。

        #define __define_initcall(level,fn)
        static initcall_t __initcall_##fn __attribute_used__

        11、淺談分析Arm linux 內核移植及系統初始化的過程咨詢QQ:313807838
        __attribute__((__section__(".initcall" level ".init"))) = fn

        #define core_initcall(fn) __define_initcall("1",fn)
        #define postcore_initcall(fn) __define_initcall("2",fn)
        #define arch_initcall(fn) __define_initcall("3",fn)
        #define subsys_initcall(fn) __define_initcall("4",fn)
        #define fs_initcall(fn) __define_initcall("5",fn)
        #define device_initcall(fn) __define_initcall("6",fn)
        #define late_initcall(fn) __define_initcall("7",fn)
        #define __initcall(fn) device_initcall(fn)

        由此可以判斷,所有的設備驅動函數都必然通過*_initcall(fn)宏的處理。以此為入口,可以查詢所有的設備驅動。
        core_initcall(fn)
        static int __init consistent_init(void) linux/arch/arm/mm/consistent.c
        static int __init v6_userpage_init(void) linux/arch/arm/mm/copypage-v6.c
        static int __init init_dma(void) linux/arch/arm/kernel/dma.c
        static int __init s3c2410_core_init(void) linux/arch/arm/mach-s3c2410/s3c2410.c

        postcore_initcall(fn)
        static int ecard_bus_init(void) linux/arch/arm/kernel/ecard.c

        arch_initcall(fn)
        static __init int bast_irq_init(void) linux/arch/arm/mach-s3c2410/bast-irq.c
        static int __init s3c_arch_init(void) linux/arch/arm/mach-s3c2410/cpu.c
        static __init int pm_simtec_init(void) linux/arch/arm/mach-s3c2410/pm-simtec.c
        static int __init customize_machine(void) linux/arch/arm/kernel/setup.c

        subsys_initcall(fn)
        static int __init ecard_init(void) linux/arch/arm/kernel/ecard.c
        int __init scoop_init(void) linux/arch/arm/common/scoop.c
        static int __init topology_init(void) linux/arch/arm/kernel/setup.c

        fs_initcall(fn)
        static int __init alignment_init(void) linux/arch/arm/mm/alignment.c

        device_initcall(fn)
        static int __init leds_init(void) linux/arch/arm/kernel/time.c
        static int __init timer_init_sysfs(void) linux/arch/arm/kernel/time.c

        late_initcall(fn)
        static int __init crunch_init(void) arch/arm/kernel/crunch.c
        static int __init arm_mrc_hook_init(void) linux/arch/arm/kernel/traps.c



        評論


        技術專區

        關閉
        主站蜘蛛池模板: 双江| 且末县| 南丰县| 惠州市| 政和县| 沈阳市| 文昌市| 卓尼县| 富锦市| 田东县| 华蓥市| 闻喜县| 大石桥市| 文登市| 信宜市| 巴塘县| 从江县| 民勤县| 营口市| 五峰| 那曲县| 宜宾市| 安义县| 金湖县| 绥芬河市| 浙江省| 阳高县| 库车县| 桂阳县| 宜黄县| 阜城县| 琼中| 喀喇沁旗| 宝兴县| 康保县| 休宁县| 尼玛县| 清水县| 沙田区| 开平市| 喜德县|